

### Outline

#### Monday, April 9

- Recap of free energy calculation methods
- Conditional Reversible Work (CRW) coarse graining
- Tuesday, April 10
- Applications to soft matter problems
- Dynamically-consistent coarse-grained models



























## Iterative Boltzmann Inversion (IBI)

$$\begin{split} u_{n+1} &= u_n + k_B T \ln \Big[ g_n \big/ g^{ref} \Big] \quad n = 0, 1, 2, \cdots \\ F(u_n) &= g_n \quad \text{Operator } F \text{ maps } u \text{ on } g \\ \text{Start with the potential of mean force: } u_0 &= -k_B T \ln g^{ref} \\ \text{Setting } Y(u) &= -k_B T \ln F(u) \text{ this is equivalent to} \\ u_{n+1} &= u_n + \left( u_0 - Y(u_n) \right) \quad n = 0, 1, 2, \cdots \\ \text{For comparison: The classical Newton method would be} \\ u_{n+1} &= u_n + \frac{Y'(u_n)^{-1} (u_0 - Y(u_n))}{2} \quad n = 0, 1, 2, \cdots \end{split}$$

### IBI is a modified Newton method

This shows that IBI is a modified Newton method which uses the approximate derivative

$$Y'(u) = -k_B T \frac{1}{F(u)} F'(u) \approx Id$$

i.e.,

 $F'(u)\approx -\beta F(u)Id$ 

Becomes exact when  $F(u) = e^{-\beta u}$  (low density limit)

#### Inverse Monte Carlo is an exact Newton method

Another option is the inverse Monte Carlo iteration  $u_{n+1} = u_n + K^{-1} (g^{ref} - F(u_n)) \quad n = 0, 1, 2, \cdots$ 

where K is a discretization of the integral operator

$$(Ku)(r) = \int_{0}^{\infty} k(r,r')u(r')dr'$$

with

$$k(r,r') = -\beta \left( \left\langle S(r)S(r') \right\rangle - \left\langle S(r) \right\rangle \left\langle S(r') \right\rangle \right)$$

Lyubartsev, Laaksonen, 1995



















# Analogy: single-iteration IBI

 $u_{n+1} = u_n + (W - Y(u_n)) \quad n = 0, 1, 2, \cdots$  $W = -k_B T \ln g^{ref}$ 

• perform a single IBI iteration on the solute-solute interaction using fixed (pre-determined) solute-water and water-water IBI interactions • choose  $u_0 = 0$ 

$$u_1 = W - Y(u_0) = W - W^{off}$$
$$= W_{\text{interaction}}(R) + \Delta W_{\text{solvent}}(R)$$



















| Parameterised models                                                                                                                                                                                                             | Derived models                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure-based  terrative Boltzmann Inversion (IB))  trickwood Buff IBI ((B-IB))  trickwood Buff IBI ((B-IB))  tricket Bottop Carlo (IMC)  Relative Entropy  Generalised Yvon-Born-Green  Force-based  force-based  force-based | <ul> <li>Pair potential of mean force (pPMF)</li> <li>Effective force coarse graining (EFCG)</li> <li>Conditional Reversible Work (CRW</li> <li>Minimize state-point dependent<br/>average multibody contributions</li> <li> by deriving the potentials from the<br/>atomistic interactions at pair level</li> <li>Transferable models!</li> </ul> |

































| Model          | $\Delta F_{ex}$        | $\gamma_{\scriptscriptstyle LV}$ | $\alpha_{p}$                        | κ <sub>7</sub>                    |  |
|----------------|------------------------|----------------------------------|-------------------------------------|-----------------------------------|--|
|                | / kJ mol <sup>-1</sup> | / mN m <sup>-1</sup>             | / 10 <sup>-9</sup> Pa <sup>-1</sup> | / 10 <sup>-3</sup> K <sup>-</sup> |  |
| Fine-grained   | -15.5                  | 17.6                             | 1.7                                 | 1.31                              |  |
| Coarse-grained | -6.6                   | 18.5                             | 1.8                                 | 1.16                              |  |

























