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iﬁ‘ Outline of the 2 Talks

= Tuesday Talk 1:

Intro to Charged Soft Matter, Algorithms for
computing long range interactions

= Wednesday Talk 2:

Applications mainly towards the dynamics of
Charged Soft Matter



{® Motivation Lecture 1

= Introduction to Charged Soft Matter taking
Polyelectrolytes as example

= Theoretical descriptions (blobology, PB)

= Simple Test Systems and Comparisons to
Mean-Field Results

= Methods for Treating Long Range
Interactions under Various Conditions



{2 Overview Part 1: Polyelectrolytes

e charged polymers >~ Polyelectrolytes

e general considerations

e Poisson-Boltzmann (PB) and Debye-Hiickel (DH) mean field theory
e counterion distributions

e condensation criteria



{2 What are Polyelectrolytes?

Charged macromolecules which dissociate charges in solution
(= water soluble )

synthetic examples: biological examples:
~(CH-CHy)y
poly-acrylic acid cell membranes
sone sulfonated polystyrene DNA, RNA, proteins
Applications: Useful for:
super-absorber gene transfer mechanisms
viscosity modifiers, understanding biological functions,
additives to detergents
paper industry, waste management DNA packing

Large tendency to self-assemble in nanostructures !
5
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Polyelectrolyte (PE) Theory

PEs possess many length scales: R., &, L,, Ap, ¢ . ..

Implicit solvent
model

v

©

€, (Implicit H,0O)

€

G

e: unit electronic charge, €,: relative dielectric permittivity. Electrostatic
2

Interaction energy:

dmegerr”

9



iﬁ‘ Bjerrum Length and Coulomb E

e2

dmegerlp

The Bjerrum length /g is defined via kg1T' =

62

r—
B drepe, kBT

For water at room temperature we find

B (1.6 - 10~ 190)? 713
 4m-8.85-10712.C . 78.5-1.38 - 10231 . 208K

(B

The electrostatic interaction of two charges ()1 and ()2 separated by r is
E/kpT = (912,

The electrostatic energy of a homogeneously charged (Q) sphere of radius
R is

2 2
E/kBTZKBQQ—R%KB% 10



Validity of Implicit Water Model

look at the NaCl (aq) pair potentials using an explicit water simulation
containing 1000 SPC water molecules

~
2 L _
1/4me, 72 1
_ ]
gﬂ e _
= O
-1/4ne, 72 1 |
Na'-CI
o | i
/ ! !
0 0.5 1 1.5
r (nm)

B. Hess, C.H., N.vdV., PRL (2006) 11



iﬁ‘ Flory Argument for Chain Extension

The Hamiltonian of a Gaussian chain is given by

o 3ksT al
0T op2

— —

(Ti+1 — Ti)2

=1

— R = bvN (RW), N monomers of size b, f: fraction of charged
monomers. The Flory energy of a PE chain is

R (N2
Ep =kl (g +—¢1—)
OEr OR  (Nf)Up
g VTN r Y

— R~ N’ f2/3p2/3
Chain growth linear in N, electrostatic interactions swell the chain
R o« N”, PE has v = 1, as opposed to RW { = 035) or SAW (v = 3/5)

12



iﬁ Blobology: DeGennes, Pincus, Velasco, Brochart

g:  number of monomers
within a blob

&.: electrostatic correlation
length (size of the blob)

Two Assumptions:

e chain inside electrostatic blob behaves Gaussian £2 = b?g

2
e electrostatic interaction inside blob (f9)"tp ~ 1

Ee

4
—> the electrostatic blob parameters &, = (fS—eB)W, g = (%)2/3

The chain length is given by a blob pole %{6

— R = N(fQIfB)Q/?’(%)l/?’ = NE}B/BfQ/SbQ/S = Flory argument

Neglected: e counterions, e solvent quality i3



1. Simplification

complex interaction: ion distribution < polymer conformation
stiff, stretched polymer conformation — uniformly charged rod.

14



Onsager Argument for Condensation

Ty
L A=/ (g = e /AmekpT
e
o[ |7k 7 o) =2
Qe
e’ question: AF = AFE — kgT AS 7
e AE~602—7>;81n§ ASNIH%NQIH%
e
T :>AF=<%B— >2kBTln§
— !

£ = %B < 1, entropy dominated, £ := %B > 1, energy dominated
—> The charged plane is energy dominated

—> The charged sphere is entropy dominated
15



a) b) c) d)

Successive approximation stages to go from a solution of many
macromolecules to a cell model of one macromolecule

Factorization of the many-body partition function into a product of
one-particle partition functions

16



Poisson Boltzmann Equation

Poisson Eq: v2y(7) = —S (@) + 0O (7))

The electrochemical potential of each ion is 4 = evDyp+kpT Inn(? =

Boltzmann populations n(?) = n(()i)e_e"’(l)w/kBT =

Poisson-Boltzmann Equation

V2h(F) = —< (0 HnSHemev /T o (D) (De—ev! v /kuT)

For an 1:1 electrolyte

VQ’(ﬂ(??) = %no Slnh(€¢/kBT)

the linearized equation is called the Debye-Huckel approximation:
17



Debye-Huckel Theory

with an exponentially screened solution
Y(r) = Ae "7

where k is called screening parameter, and k™' =A,=@8xl n,)"
Ap is called Debye-Hiickel screening length (& range of the electrostatic
interaction). Its value has a 1/y/n, salt dependence:

e 3 A for 1 Mol NaCl
e 10 A for 100 mMol (1:1) salt (physiological conditions)

e 1 pum for pure water (ng ~ 10~7 Mol due to autoionization of water
into H™ and OH™).

18



{2 PB for Semi-Infinite Charged Plane

Let us look at the Poisson-Boltzmann theory for the infinite plane with
surface charge density o > 0 and neutralizing counterions of valence v
in one half-space (Gouy and Chapman):

(@) = Z2n0)efov@ o y0) = =2 | lim /() = 0. (5)

€ € T— 00
It is straightforward to verify that the solution to Eqns. (5) is

€0

y(xr) = Begvyp(x) = —2In <1—|—i> with Age =

Acc 2mlgvo

Aac is referred to as the Gouy-Chapman length. lon density n(z) and
integrated ion distribution P(x) are given by

—(QWKBUQ)_l an x ~ ' rnr) = 1-— i_l
ne) = e 2 PE) = 0 dra@) =1 (1+AGC) . (6)

Note that P(Agc) = 3, strong ion localization !

19



In linearized Poisson-
Boltzmann approximation
Eqn. (5) becomes a linear
second order differential
equation with constant
coefficients. lts solution is

y(z) = e 2/rec _ 1. (7)

The ion distribution in the
linear case is given by

1

n(zr) =

o 2)2

e_2x/AGC. (8)

The ionic density in Eqn. (8) shows an exponential rather than algebraic
decay, as in Eqn. (6). The contact density n(0) is overestimated by a
factor of 2 independent of the surface charge density o. Hence, linearized
PB theory fails already at arbitrarily small o.

Ex: For 0 = —%—, I = T7.14 = Agc ~ 2A very smalll Important for

100 A2 _
membranes, large colloids etc.

20



PB of Rod Cell Model

| § g - Bjerrum length: /g = e%/47rskBT
\Q-/ Manning parameter: £ = )\EB/eo
| O
o ~ |o | potential: y(r) = eow(r)/kBT
1 | R
\ D
()
O o I
( <P
r,
O) O
O ()
O D
L T T
~ @ y(r) = —2In < —+/1 + v~2cos (fy In —)
| | | | R R

The integration constants v and Ry follow from the boundary conditions

21



Counterion Condensation

the fraction of counterions within a distance r € [rg, R] is given

fr)y =1 —% - %tan (fylnRLM)

1 | : :
Manning condensation at & > 1:
o2 1
g [ _ f<1_g ]%Enoor(f)<oo
&
- Inflection point criterium:
: v =3
: d?f
0 =0 = R
0 Ry R d(ln 7“)2 R M

r (logarithm)

22



Manning Condensation

The (Manning—) fraction f(Ryn) = 1 — 1/€ is a critical limit, because
(for & > 1) we find:

1
Rli_{réof(r)<1—g — r<o
1
Rlim f(fr)zl—g — r=Ry~VR— o0
lim f(r) > 1 ! — R
- ~U —
Ao !\ & " >

y(r) — y(ro) = —2 In(r/ro) + O(In ln:—0>

Rod with charge parameter £ =1

¥ n(R) ¥ 1++4* 1 P
11m p— 11m = — = p—
R—o0 n(’r) R—o0 25 2£ Pig b

23



iﬁ‘ Condensation with Added Salt

Salt addition
1.0 ' ' lon fraction — charge fraction
0.8 - |
| more salt — more screening
? 06 B n
= 04l i | condensed layer contracts
0.2+ f—21 " Ap S R = new inflection points

00— 510 20 50 ApS Ry = no inflection points

r/To
addition of salt causes an exchange of the relevant length scales:
Ry — Ap.  The crossover can be quantified through the inflection
point criterion. At A\p < Ry condensation looses it meaning!

24



Scheme of a Typical Computer Simulation

Langevin thermostat

"hard core" —_|

friction

electrostatics\_/

periodic boundary conditions geometry
r - ] .o: ° .o: ® .o: O
o % 0o %% e °, o o O
° ..: ° ..: ° ..: O O
3 : o %q 0 %g| 0 %
P M-Algorithm : : : @
(Mesh-Ewald) © o0’ |0 g0°% 0 0®
o g0 g0 %

hexagonal cell

25



1.0| | | | | | |
0.8F -
?06_ ( ) |
041 Smé&=3,v=1—1
02k Sim¢=1,v=3—|
LDA
0.0 "5 10 20 50 100
r/7To

iﬁ‘ Manning Parameter versus Valence

counterion condensation is stronger
than in the Poisson-Boltzmann
theory

product £v no longer universal.
discrepancy increases with valence.

theoretical description through a
local correction to the PB free
energy functional possible.

Poisson-Boltzmann neglects correlations. These enhance counterion
condensation, especially for multivalent counterions.

26



iﬁ‘ Overcharging for Multivalent Salt

L5m T T ' £ =4:2:2-Salt; i = 2.1 x 1072073,

1ok [ - o the charge of the rods gets
o repeatedly over-compensated.
S

0.5 PB— - reversed charged layers.

Sim —
L . charge oscillations are exponentially
0.0 2 3 45 10 17 damped.

r /70
Poisson-Boltzmann fails qualitatively for strongly charged systems

better: integral equations, i.e. " ‘hypernetted-chain”’ (HNC).

27



Efficient Algorithms for Long
Range Interactions

(... All I say will in principle also be
valid for dipolar interactions)

28



{2 Electrostatics under pbc

e Periodic boundary conditions (pbc)
eliminate boundary effects in bulk

simulations
® ° °
[} ®e . o
e Minimum image convention for short
ranged potentials e,
o n
e Coulomb potential &~ 1/r is long ranged, e o‘ e
many images contribute significantly ° ¢ .

e Sum is only conditionally convergent

e For fully periodic boundary conditions (pbc) many efficient methods

exist:
Ewald (N3/2), P3M (N log N), FMM (N)

e Simulation of surface effects: both periodic and nonperiodic
coordinates (2d+h / 1d+2h geometries) 29



Conditionally Convergence

Example: The alternating harmonic series:

= (—1)kHt 1 1 1 1
—1l—-4-—-+4-—---=1In2
2% 2737175 .

k=1



Conditionally Convergence

Example: The alternating harmonic series:

= (—1)kHt 1 1 1 1
-1 -4+ -4+ - ... =1n2
kz::l k 237175 .

but look at this...

31



Conditionally Convergence

Example: The alternating harmonic series:

= (—1)kHt 1 1 1 1
-1 -4+ -4+ - ... =1n2
) 2 537475 "
k=1
but look at this...
1.1 1 1. 1 1 1 1 1 1
j [ R A (G B (i (== =) - = —
( 2) 4+(3 6) 8+(5 10) 12+(7 14>

32



Conditionally Convergence

Example: The alternating harmonic series:

= (—1)kHt 1 1 1 1
-1 -4+ -4+ - ... =1n2
) 2 537475 "
k=1
but look at this...
1.1 1 1. 1 1 1 1 1 1
j [ R A (G B (i (== =) - = —
( 2) 4+(3 6) 8+(5 10) 12+(7 14>

33



Pair energy summation

s < GiG
Uu= 2% -3
22 il

i j=1
m summingup 1/r

Coulomb pair potential
m Bjerrum length /g

Electrostatics

Coulomb energy

Bjerrum length
62

|n =
5 Aregerkp T

m electrostatic prefactor
inverse temperature

m for two unit charges:

1 kBT \

11,

34



Electrostatics

‘A Coulomb energy JL

Pair energy summation Potential summation
s~ iG] 'y
u- By U= 5> ao(r)
2 = |I’,j| 1
J=1 /
B summing up 1/r m potential from solving
Coulomb pair potential Poisson’s equation

m Bjerrum length /g N
V%(r) — —4rlg Z qjé(rj — I’)

=
equivalent approaches

35



Electrostatics in Periodic BC

LJLL

Pair energy summation Potential summation
/

00 N N
/ Q 1
U= 5> 3 Y e U= 32 aden)
e e rjj + mL]| .:1
=0m2=S/,/=1 i
m conditionally convergent —
summation order important

m numerically difficult
m U not periodic in coordinates r; m U is periodic in coordinates r;

Coulomb energy

m solve Poisson’s equation
iImposing periodic boundaries

these two calculate something different!

36



The Dipole Term

m assume summation in periodic shells
m surrounded by polarizable material of dielectric constant ..

Pair energy summation
vacuum around: €., = 1

Potential summation
periodic: €5, = 00

m metallic boundary conditions ¢,, = oo always safe
B Never use e, < oo for conducting systems

37



The Ewald Method

P. P. Ewald, 1888 — 1985

Coulomb potential has 2 problems
1. singular at each particle position

2. very slowly decaying

|dea: separate the two problems!
m one smooth potential — Fourier space
m one short-ranged potential — real space

38

P. P. Ewald, Die Berechnung optischer und elektro
statischer Gitterpotentiale, Ann. Phys. 369(3):253, 1921



Splitting the Potential
charge distribution

N
p=>_ > gdi(r—r,—n)

nelz3 i=1

= o+ H

replace § by Gaussians of width o~ ':

PGauss(F) = (&/ﬁ)S e "

2f2

6(r) = pgauss(F) + [0(F) — pGauss(F)]

39



The Standard Ewald Sum

U= U+ Uk 4y

with
/ erfc(alrj +mL
un—=2= Z Z qiq; (afrj + mL) real space correction
mGZS I?/ ‘rlj + mL|
Utk = 5 L3 Z e~ K /4% | 5(Kk)2 Gaussians in k-space
20 <
/
ues) = — 2B Z q° Gaussian self interaction
forces from dlfferentlatlon
S

or;

40



Particle Mesh Ewald Methods

SHULATION ...The Bible...
Sz written by the evangelists
R.W. Hockney, J.W. Eastwood, 1988

* Near field: Standard Ewald
« Far field: replace Fourier space sum by the discrete
FFT on a regular mesh
» Computational order (N 1og V)
« P3M (Hockney, Eastwood, 1973)
* The wheel got reinvented:
PME (Darden et al. 1993)
SPME (Essmann et al., 1995)

Particle-Particle-Particle-Mesh &b Simply the best.....



iﬁ‘ Steps of the PSM

1.{r;,qg;} — p(r): interpolate charges onto a grid
(window functions: cardinal B-splines)

2. p(r) — p(k): Fourier transform charge distribution

3. o(k) = G(k)j(k): solve Poisson’s equation by multiplication
with optimal influence function G(k)
(in continuum: product of Green’s function ‘,‘(—7; and
Fourier transform of Gaussians e—k2/40‘2)

4.iko(k) — E(k): obtain field by Fourier space differentiation
4. E(k) — E(r): Fourier transform field back

5. E(r) — {r;,F;}: interpolate field at position of charges
to obtain forces F; = g/E;

Instead of ik-differentiation (4.) | can also use finite difference or
differenciate the pullback function of V¢ . This saves two FFT's



Charge Assignment Function

q dq !

0.8 - 3
4
q6 = 06 |
/_\ - 04
q

MP) ()

L
0.2 -

9W ———~ % 0

a 0 1 2 3 4 5

m interpolate charges onto h-spaced grid

N
1
pv(Fp) = s Z Qi W(p)(rp — ;)
=1

m W(P)(r) cardinal B-splines in P2M / SPME

43



iﬁ‘ Optimal Influence Function
® minimize the rms error functional

Q[G] = /h3 dr1/\/dr[¢(G; r,r1)—q5(r)}2

with the analytic reference potential

A AT _j2 4,2
p(K) = 12© o/

m leads to

_ e 22(k + ml)G(k + ml)

GOPt(k
0 [ZleZS % (k + ml)}z

with m = L/h

44



{2 Why Control Errors ?

N
rms force error AF = \/<(Fe><a‘3t — FEwald)2) — \/,1\, > AF?
=

10

I'ma‘lx=1’ kma‘1x=10 ‘7
row=2 K, =10 ——— |

1
rmax=1’ kmax=2O -

0.1 f

0.01 ¢

AF

0.001

0.0001 |

1e-05

m optimal « brings orders of magnitude of accuracy
m at given required accuracy, find fastest cutoffs
m compare algorithms at the same accuracy

45



How to Control Errors

10

total error
real space estimate
k-space estimate

1 L

0.1 ¢

AF

0.01 ¢

0.001 ¢

0.0001

Kolafa and Perram:
>gr 2

N Va3 2P L

AFreq ~

Hockney and Eastwood:

2,2
Imax

-~ quz Q[éopt(k)]

A Frourier ~ \/N [3

)

46



(2 Interlaced P3M:

A. Neelov, C. H., J.Chem. Phys. 132, 234103 (2010)

: 1
F,('mt) _ 5 (F/-I-F,p)

m force F; is average of P3M force and
P3M force with grid shifted by p = (h/2)e

m doubles the effort, gains order of magnitude in accuracy
m effort can be reduced by using complex-to-complex FFT

Interlacing plus analytical differentiation seems to be the
fastest method currently ! 47



L ScaFaCoS Library

Scalable Fast Coulomb Solver

http://www.scafacos.de

Library of different Coulomb solvers
“Highly scalable”, MPI-parallelized
Common interface for all methods

Developed by groups from Julich,
Wuppertal, Chemnitz, Bonn and
Stuttgart

Project by the German Research
Ministry (BMBF), officially ended
2011

Open source: Source code on github

http://www.scafacos.de/

Bundesministerium, 25
fiir Bildung [
und Ferschung



iﬁ‘ Implemented Algorithms

@ SCAFACOS currently provides 11 method implementations:
DIRECT, EWALD, P3M, P2NFFT, VMG, PP3MG, PEPC, FMM,
MEMD, MMM1D, MMM2D

@ Features:

e For reference purposes (not competitive): DIRECT, EWALD

e 3d-periodic boundaries: P3M, P2NFFT, VMG, PP3MG, PEPC,
FMM(, EWALD)

@ Open boundaries: P2NFFT, FMM, PEPC(, DIRECT)

e Partially periodic boundaries: P2NFFT, FMM, PEPC, MMM*D

@ General triclinic boundaries: P3M, P2NFFT

@ Distinguish Splitting Methods, Hierarchical Methods and Local
Methods (i.e. MEMD)

A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver, I.
Kabadshow, F. Gahler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig, D. Potts, G.

Sutmann, Comparison of scalable fast methods for long-range interactions, Phys. Rev. E
88, 063308 (2013).



(= P2NFFT

= Particle-Particle Nonequidistant FFT

= Simplified P3M is a special case of
P2NFFT

= Same structure = same performance

= Minor mathematical details, simpler
approach

= Advantage: can be formulated in 3D,
2D,1D, 0D

50



iﬁ‘ Multigrid

@ Solve Poisson equation in far field with
multigrid PDE solver

e use different levels of successively
coarser meshes

@ solve poisson equation on these
meshes by recursively improving the
solution of the coarser mesh

@ Complexity O(N)

@ Can be extended to handle periodic
BC

@ In SCAFACOS: PP3MG (Wuppertal),
VMG (Bonn)

\Restriction

o Smoothing/Solving

51



iﬁ‘ Barnes-Hut Tree code

@ Hierarchically cluster charges
@ Multipole expand these clusters

@ Compute interaction with far away
cluster multipole moments instead of
single particle charges

@ Complexity O(Nlog N)

@ Can be extended to handle periodic
BC

@ In SCAFACOS: PEPC (Jillich)

52



Fast Multipole Method

@ Expand Treecode: let clusters interact s 2 0 0
with each other SEe ///%//%

X
X

@ Put everything on a grid . X
@ Complexity O(N)

@ Can be extended to handle periodic
BC

@ In SCAFACOS: FMM (Jdlich) FMM Interaction

X

X

pad

53



1? MEMD for Molecular Dynamics

MEMD (Maggs/Rosetto 2002,
Pasichnyk/Dinweg 2004)

In principle, Maxwell's equations are local

Problem is the large speed of light E,

Simply assume that the speed of light is
small

Statistics is still correct! E.
« Method

Simulate the propagation of E, j, H, on a
cubic lattice (plaquettes)

Use same time steps as MD

= Can handle dielectric variations
= O(N)
« Parallelization: Algorithm is fully local!

. ScaFaCoS: MEMD (Stuttgart)
F. Fahrenberger, CH, Phys. Rev. E 90, 063304 (2014) 54

A. C. Maggs and V. Rosetto,
PRL 88:196402, 2002

|. Pasichnyk and B. Dunweg,
JPCM 16:3999, 2004



{ Benchmarks Complexity

@ P2NFFT, P3M and
FMM are fastest

@ MEMD and Multigrid
~ x10 slower

@ All algorithms show
(close-to-)linear
behavior

@ log N-term of P2ZNFFT
and P3M is invisible

@ No cross-over with
FMM

1073 |
—> MEMD
~ -» P2NFFT
o—e P3M
o VMG
2 i v -v FMM
w 1074F |
Y <« -« PP3MG
o0
= ¢ N N e o
O >
¥
£
-5
E 10 g R R .
) — L aA------k--=--=
107 4 5 " 7 3 9
10 10 10 10 10 10

#Charges
Silica melt, epot < 1073, P = 1 (JUROPA)

55



iﬁ‘ ScaFaCoS Conclusions

®© 6 6 ¢

Performance depends heavily on architecture, compiler and
implementation

...and tuning!
x 2 differences between algorithms are “normal”
Within these limits, FMM, P3M and P2NFFT perform equally good

MEMD slightly worse (~ x4), but performs better with larger
systems

Multigrid methods seem to be worse (=~ x10)
... apparently due to large variation in the potential

56



iﬁ‘ Some Coulomb Solvers

N = Number of charges

Year | Method Complexity | Reference

1820 | Direct Summation N? Laplace

1921 | Ewald Summation N> Ewald

1974 | Particle-Particle NlogN Hockney, Eastwood
Particle-Mesh

1977 | Multigrid Summation N Brandt

1986 | Barnes-Hut Treecode Nlog N Barnes, Hut

1987 | Fast Multipole Method | N Greengard, Rokhlin

2002 | Maxwell Equation N Maggs, Rossetto
Molecular Dynamics

« Methods often complex

* They do not parallelize easily

* Prefactors and scaling are highly platform and
Implementation dependent

« MC and MD performance differs, check accuracys?



Partially Periodic Systems

water : qan, | e

f
membrane 'J . °

water A

« 2D periodic: slablike systems, surfaces, thin films,
membranes, air-water interfaces

« 1D periodic: Needles, rods, nanopores,

* 0D periodic boundaries = open systems

« P3M cannot be employed straightforwardly
 P2NFFT can be formulated to work

58



{® MMM2D and MMM1D

o= BV (X+K)2+(y+1)2+22

ds(r)= >

k.lelZ \/(X + k2 +(y+1)2+22

:% 2 (Z Ko (\/ﬁ2+P2\/(y+/)2+z2)) e

e~V B2 PP+ 2|
VB2 + PP+ P

S oIPX gl
L

p,qE 2E 7,

27'(' efPQ|Z| . . Tr .
=7z ( Z f—e'pxe'qy + |z|> + Fﬁ 1 + Og—0(P)

p2+g2>0 P9

Convergence factor based summation (limit 3 -> 0)
Near formula for z =0

Optimal computation time comparable to Ewald O(N?/3)
Analogous formulae for 1D, but then Tcpy = O(N?)

A. Arnold, C. H., Chem. Phys. Lett. 354, 324 (2002);
A. Arnold, C.H., J. Chem. Phys. 123, 144103 (2005) 59



(> 2D PBC approx. with 3D PBC

The Yeh and Berkowitz correction

replicated slab system

slab syvstem
I

replicated slab system

m potential of a charge and its periodic images similar to plate
m plates cancel due to charge neutrality

N N
27‘(‘(],'20'](’2]/ + mLZ] + ‘Zj/ — mLZ\) = 47Tq,' nL, ZO‘j =0
J=1 j=1

m |leave a gap and hope artificial replicas cancel
2
m requires changed dipole term U(?) = 2% (Z, q,-z,-)

60



qﬁs The ELC Method

N K|z K|z
T e||z’f—|—eHZ’fikX.. kv
Ue =12 E: E:QIQj ) g' (kX + Ky Yj)
L - fog(€'Patz — 1)
ke2rz? =1
k?>0

« Calculate contribution of image layers exactly

* Subtract numerically => smaller gap size

« Change summation order with dipole term

« 2-4x faster than plain Yeh-Berkowitz plus full
error control

A. Arnold, J. de Joannis, C.H., J. Chem. Phys. 117, 2496 (2002)
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{2 Dipolar Interactions

= There is also a dipolar P3M available in
ESPResSo

m Also a 2D+h Version as DLC

J. J. Cerda ,V. Ballenegger, O. Lenz, Ch. Holm, P3M
algorithm for dipolar interactions, J. Chem. Phys, 129,
234104 (2008)
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Include Dielectric Interfaces

Where does this matter?
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What does Dielectric Contrast do?

e=2]e=280 e=2] =80

dielectric :

boundary
force

= Water is more polarizable than the solid wall material, leading to
an induced charge of the same sign

m Force pushing the charge away from the wall
m For air-water interfaces it is the opposite situation
= How to compute the electrostatic force efficiently?

m Use either Image charges or induced charges....



:4- Planar Dielectric Interfaces

e=2 =280 g=2

(5>
dielectric

boundary
force

Can be handled by
« ICMMM2D
« ELCIC

S. Tyagi, A. Arnold, C. H., ICMMM2D: An accurate method to include planar dielectric
interfaces via image charge summation, J. Chem. Phys.127, 154723 (2007)

S. Tyagi, A. Arnold C. H., Electrostatic layer correction with image charges: A linear
scaling method to treat slab 2D + h systems with dielectric interfaces, J. Chem.

Phys.129, 204102 (2008)
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{= ICC* Algorithm
= Boundary condition for the normal component of
the electric field:

e1E1-n=¢e3E5-n
= can be fulfilled by introducing a charge density:

1 €2 —E1

= g E
2 161-|-62

o

= Discretization of the surface to boundary

elements
. electric

Field

normal vector
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iﬁ‘ ICC* Algorithm

= Boundary condition for the normal component of
the electric field:

e1E1-n=¢e3E5-n
= can be fulfilled by introducing a charge density:

1 €2 —E1

= € E
2 161-|—€2

o

= Discretization of the surface to boundary
elements lead to a set of equations

» Solved by an iterative scheme O'z'/-\Ez'
"

® E can be obtained by any Coulomb solver

» Periodic boundary conditions automatically fquiIIe69



iﬁ‘ ICC* Algorithm

= Boundary condition for the normal component of
the electric field:

e1E1-n=¢e3E5-n
= can be fulfilled by introducing a charge density:

1 €2 —E1
2T €1+ €9

o E
= Discretization of the surface to boundary
elements lead to a set of equations

ICC* (Induced Charge Computation) Algorithm:
S. Tyagi, M. Suzen, M. Sega, M. Barbosa, S. Kantorovich, and
C. Holm, Journal of Chemical Physics 132, 154112 (2010)
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Salt can Reduce the Dielectric ¢,

80

A Na' CI”
- - ¢ =72/(140.278¢c) -
o—o Na” Cl” scaled :
+ K" I

70

60 N

x
50 .
40 + _
30 . | . | . | . | &~
0 1 2 3 4

concentration (M)
All-Atom MD, SPC/E explicit water

B. Hess, C. Holm, N. van der Vegt: PRL 96, 147801 (2006) 20



Inhomogeneous Dielectrics

A2 A
AR
‘-G'U

Permittivity can be reduced
inhomogeneously by
presence of ions around
charged objects!



{2 Maxwell-like Equations

A. C. Maggs and V. Rosseto, PRL 88, 196402 (2002).
|. Pasichnyk and B. Dunweg, J. Phys. Cond.Mat. 16, 3999 (2004).

VeV = —p
=V-D = p (Gauss law) D = ¢E.
VxD = 0  Varying permittivity

» potentials to fields
* most general form
General constraint

: : 1 .
D+j-VxO=0 B=-6

Lagrangian treatment leads to equations of motion
for the particles and fields. 75



{* Maggswellian Dynamics with ,(r)

« Naturally formulated on a lattice (=>fast and local)
« Changing speed of light (CPMD) (=> tricky)
* Implemented in ESPResSo as MEMD (=> useful)

Leads naturally to Maxwell-like equations
A. C. Maggs and V. Rosseto, PRL 88, 196402 (2002).

f' o Pi J. Rottler and A. C. Maggs, PRL 93,170201 (2004).
i —
mj
i oU €;
Pi = —o -t D(r;)
! |. Pasichnyk and B. Dinweg, J. Phys. Cond.Mat.
. D 16, 3999 (2004).
A — - F. Fahrenberger, C. Holm, Phys. Rev. E 90, 063304
£ (2014)

D = C2V><(V><A)—é
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MEMD with Variable Dielectric

« permittivity as a vector (differential1-form), taken as the
difference between adjacent lattice points (harmonic

average)
74



Chance to visit Stuttgart

iz Cecam  srwis

Dynamische Simulat von
g:o:'neqi F;e; |d Lcl:laalcu; Svst emen mit gro Be T ilchenzahlen
INSTITUTE FOR ,_;:;‘::I:I:I::’;.;:.
COMPUTATIONAL | g University of Stuttgart
. Q PHYSICS WEE Germany
3 ()
Tutorial:

,Particle-based Simulations for Hard and Soft Matter*

It takes place at the Institute for Computational Physics,
Stuttgart University, 08 - 12 October, 2018

To register look at www.espressomd.org or
https://www.cecam.org/workshop-1605.html
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http://www.espressomd.org

{® Wrap up Lecture 1:

*Electrostatic Terminology, Flory arguments,
Blobology

*Cell model, Mean-field theories (PB, DH) to
describe ionic profiles around charged objects

*Basic simulation methods to describe charged
systems

*How to simulate long range interactions with pbc

Any Questions??

76



Acknowledgements

M. Deserno, A. Arnold, F. Weik, F. Fahrenberger, Z. Xu, J. de Joanis,
O. Lenz, S. Tyagi, and many more....

www.espressomd.org

SFBi 716

Dynamische Simulation von
Systemen mit groBen Tellchenzahlen

ESPResSo
€€ EXC SimTech, DFG, Volkswagen Foundation



