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Outline of the 2 Talks

n Tuesday Talk 1: 
Intro to Charged Soft Matter, Algorithms for
computing long range interactions

n Wednesday Talk 2:
Applications mainly towards the dynamics of
Charged Soft Matter
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Motivation Lecture 1

n Introduction to Charged Soft Matter taking 
Polyelectrolytes as example

n Theoretical descriptions (blobology, PB)
n Simple Test Systems and Comparisons to 

Mean-Field Results
n Methods for Treating Long Range 

Interactions under Various Conditions
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Overview Part 1: Polyelectrolytes
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Lecture 1

• charged polymers � Polyelectrolytes

• general considerations

• Poisson-Boltzmann (PB) and Debye-Hückel (DH) mean field theory

• counterion distributions

• condensation criteria



What are Polyelectrolytes?
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What are polyelectrolytes?

Charged macromolecules which dissociate charges in solution
(� water soluble !)

synthetic examples: biological examples:

SO!3 Na+

(CH!CH )2 n

sulfonated polystyrene DNA, RNA, proteins

poly-acrylic acid cell membranes

Applications: Useful for:

super-absorber gene transfer mechanisms
viscosity modifiers, understanding biological functions,

additives to detergents
paper industry, waste management DNA packing

Large tendency to self-assemble in nanostructures !!



1. Example Hydrogel

6



Nanostructures from Like-Charged Objects
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Nano-Structures made of Like-Charged Objects

Structure formations of charged semi-
flexible polymers

synthetic (PPPs) vs. biological semi-
flexible PEs (fd, DNA)

morphologies, thermodynamics vs kinetics



2. Example T5 Bacteriophage
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Polyelectrolyte (PE) Theory
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Polyelectrolyte (PE) Theory
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PEs possess many length scales: Re, ⇤, Lp, ⇥D, ⌅B . . .
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e: unit electronic charge, �r: relative dielectric permittivity. Electrostatic
interaction energy: e2

4⇥�0�rr.

(Implicit H2O)Implicit solvent 
model



Bjerrum Length and Coulomb E
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The Bjerrum length ⇤B is defined via kBT = e2

4⇥�0�r⇤B

⇤B =
e2

4⇥�0�rkBT

For water at room temperature we find

⇤B =
(1.6 · 10�19C)2

4⇥ · 8.85 · 10�12 C
V m · 78.5 · 1.38 · 10�23 J

K · 298K
� 7.13Å

The electrostatic interaction of two charges Q1 and Q2 separated by r is

E/kBT = ⇤B
Q1Q2

r .

The electrostatic energy of a homogeneously charged (Q) sphere of radius
R is

E/kBT = ⇤B
Q2

2R � ⇤B
Q2

R .



Validity of Implicit Water Model
Validity of the Implicit Water Model- PMF

look at the NaCl (aq) pair potentials using an explicit water simulation
containing 1000 SPC water molecules

0 0.5 1 1.5
r (nm)

−2

0

2

V p/k
BT

Na+−Na+

Cl−−Cl−

−1/4!"072 r

Na+−Cl−

1/4!"072 r

11B. Hess, C.H., N.vdV., PRL (2006)



Flory Argument for Chain ExtensionFlory argument for chain extension

The Hamiltonian of a Gaussian chain is given by

H0 =
3kBT

2b2

N�

i=1

(⌅ri+1 � ⌅ri)2

=⇥ R = b
⇤

N (RW), N monomers of size b, f : fraction of charged
monomers. The Flory energy of a PE chain is

EF = kBT (
R2

Nb2
+

(Nf)2⇤B

R
)

⇥EF

⇥R
= 0 =⇥ 2R

Nb2
� (Nf)2⇤B

R2
= 0

=⇥ R � N⇤1/3
B f2/3b2/3

Chain growth linear in N, electrostatic interactions swell the chain
R = N1/�, PE has � = 1, as opposed to RW (� = 2) or SAW (� = 5/3)
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R / N⌫
⌫ = 0.5 ⌫ = 3/5



Blobology: DeGennes, Pincus, Velasco, Brochart
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Blobology-DeGennes, Pincus, Velasco, Brochart

g: number of monomers
within a blob

�e: electrostatic correlation
length (size of the blob)

Two Assumptions:

• chain inside electrostatic blob behaves Gaussian �2
e
⇥= b2g

• electrostatic interaction inside blob (fg)2⇥B
�e

⇥= 1

=⇤ the electrostatic blob parameters �e = ( b4

f2⇥B
)1/3, g = ( b

f2⇥B
)2/3

The chain length is given by a blob pole N
g �e

=⇤ R = N(f2⇥B
b )2/3( b4

f2⇥B
)1/3 = N⇥1/3

B f2/3b2/3 � Flory argument

Neglected: • counterions, • solvent quality



1. Simplification
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1. Simplification

complex interaction: ion distribution ⇤ polymer conformation

sti�, stretched polymer conformation �⇥ uniformly charged rod.



Onsager Argument for Condensation
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Onsager argument for condensation

r

Rb

e

e

e

e

e

e

� = e0

�
b ⌃B := e2

0

�
4⇤⇧kBT

⌅(r) ⇤ �
2⇥⇤ ln(r)

question: �F = �E � kBT�S ?

�E ⇥ eo
�

2⇥⇤ ln R
r �S ⇥ ln VR

Vr
⇥ 2 ln R

r

=⌅ �F =
⇥

⌅B
b � 1

⇤
2kBT ln R

r

⇥ := ⌅B
b < 1, entropy dominated, ⇥ := ⌅B

b > 1, energy dominated

=⌅ The charged plane is energy dominated

=⌅ The charged sphere is entropy dominated



Cell Model
Cell model

a) b) c) d)

Successive approximation stages to go from a solution of many
macromolecules to a cell model of one macromolecule

Factorization of the many-body partition function into a product of
one-particle partition functions
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Poisson Boltzmann EquationSloppy Motivation of the Poisson-Boltzmann
Equation. Start with the Poisson Equation:

⇤2⇥(⇤r) = �e

�
(v(+)n(+)(⇤r) + v(�)n(�)(⇤r))

The electrochemical potential of each ion is µ(i) = ev(i)⇥+kBT lnn(i) ⇥
Boltzmann populations n(i) = n(i)

0 e�ev(i)⇥/kBT ⇥

Poisson-Boltzmann Equation

⇤2⇥(⇤r) = �e
� (v(+)n(+)

0 e�ev(+)⇥/kBT + v(+)n(�)
0 e�ev(�)⇥/kBT )

For an 1:1 electrolyte
n0 = n(+)

0 = n(�)
0

⇤2⇥(⇤r) = 2e
� n0 sinh(e⇥/kBT )

the linearized equation is called the Debye-Hückel approximation:
17

Poisson Eq:



Debye-Hückel Theory
⇤2⌅(⌃r) = 8⇤⇧Bn0⌅(⌃r) = ⇥�2

D ⌅(⌃r) = �⌅(⌃r)

with an exponentially screened solution

⌅(r) = Ae��r

where � is called screening parameter, and ��1 = ⇥2
D = (8⇤⇧Bn0)�1.

⇥D is called Debye-Hückel screening length (� range of the electrostatic
interaction). Its value has a 1/

⇥
n0 salt dependence:

• 3 Å for 1 Mol NaCl

• 10 Å for 100 mMol (1:1) salt (physiological conditions)

• 1 µm for pure water (n0 � 10�7 Mol due to autoionization of water
into H+ and OH�).
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κ −1 = λD = (8πℓBn0 )
−1/2

2 (~r)



PB for Semi-Infinite Charged PlanePoisson-Boltzmann theory for the semi-infinite plane

Let us look at the Poisson-Boltzmann theory for the infinite plane with
surface charge density ⇧ > 0 and neutralizing counterions of valence v
in one half-space (Gouy and Chapman):

⌃⇤⇤(x) =
ve0

⇥
n(0) e�e0v⇥(x) ; ⌃⇤(0) = �⇧

⇥
, lim

x⇥⌅
⌃⇤(x) = 0. (5)

It is straightforward to verify that the solution to Eqns. (5) is

y(x) = �e0v⌃(x) = �2 ln
⇤

1 +
x

⇤GC

⌅
with ⇤GC :=

e0

2⌅⌥Bv⇧
.

⇤GC is referred to as the Gouy-Chapman length. Ion density n(x) and
integrated ion distribution P (x) are given by

n(x) =
(2⌅⌥Bv2)�1

(x + ⇤GC)2
and P (x) =

ve0

⇧

⇧ x

0
dx̄ n(x̄) = 1�

�
1 +

x

⇤GC

⇥�1
. (6)

Note that P (⇤GC) = 1
2, strong ion localization !
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In linearized Poisson-
Boltzmann approximation
Eqn. (5) becomes a linear
second order di�erential
equation with constant
coe⇥cients. Its solution is

y(x) = e�2x/�GC � 1. (7)

The ion distribution in the

Poisson-Boltzmann

linearized Poisson-Boltzmann

x/λ

2π
ℓ B

v2
λ

2
n
(x

)

3210

2.0

1.5

1.0

0.5

0.0

linear case is given by

n(x) =
1

⇥⌅Bv2�2
GC

e�2x/�GC . (8)

The ionic density in Eqn. (8) shows an exponential rather than algebraic
decay, as in Eqn. (6). The contact density n(0) is overestimated by a
factor of 2 independent of the surface charge density ⇤. Hence, linearized
PP theory fails already at arbitrarily small ⇤.
Ex: For ⇤ = e

100Å2
, ⌅B = 7.1Å ⇤ �GC ⇥ 2Å very small! Important for

membranes, large colloids etc.
20
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PB of Rod Cell Model
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Cell model for the rod and Poisson-Boltzmann theory

r0

R
!

Bjerrum length: ⌥B := e2
0

�
4⌅⌃kBT

Manning parameter: ⇤ := ⇥⌥B
�
e0

potential: y(r) := e0⇧(r)
�
kBT

y⇥⇥ +
1
r

y⇥ = 4⌅⌥B n(r)

n(r) = n(R) ey(r)

;
y⇥(r0) = �2⇤/r0

y⇥(R) = 0

y(r) = �2 ln
⌅

r

R

⌃
1 + ��2 cos

⇥
� ln

r

RM

⇤⇧

The integration constants � and RM follow from the boundary conditions



Counterion Condensation
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Counterion distribution and Manning condensation

the fraction of counterions within a distance r ⇧ [r0, R] is given

f(r) = 1� 1
⇥

+
�

⇥
tan

⇥
� ln

r

RM

⇤

v� = 3

r (logarithm)

f
(r

)

RRMr0

1

1�
1

v�

0

Manning condensation at ⇥ > 1:

f < 1� 1
⇥
⇥⇤ lim

R⇥⇤
r(f) <⌅

Inflection point criterium:

d2f

d(ln r)2

����
r=RM

= 0 ⇤ RM



Manning Condensation
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Manning condensation

The (Manning–) fraction f(RM) = 1 � 1/⇥ is a critical limit, because
(for ⇥ > 1) we find:

lim
R�⇥

f(r) < 1� 1
⇥

=⇤ r <⌅

lim
R�⇥

f(r) = 1� 1
⇥

=⇤ r = RM �
⇧

R⇥⌅

lim
R�⇥

f(r) > 1� 1
⇥

=⇤ r � R⇥⌅

y(r)� y(r0) = �2 ln(r/r0) +O(ln ln
r

r0
)

Rod with charge parameter ⇥ = 1

lim
R�⇥

n(R)
n(r)

= lim
R�⇥

1 + �2

2⇥
=

1
2⇥

=
P

Pig
= p̂



Condensation with Added Salt
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Condensation with added salt

� = 2.1

r/r0

f
(r

)

502010521

1.0

0.8

0.6

0.4

0.2

0.0

Ion fraction ⇥ charge fraction

more salt ⇥ more screening

condensed layer contracts

�D � R ⇤ new inflection points

�D � RM ⇤ no inflection points

addition of salt causes an exchange of the relevant length scales:
RM �⇥ �D. The crossover can be quantified through the inflection
point criterion. At �D � RM condensation looses it meaning!

Salt addition



Scheme of a Typical Computer Simulation

electrostatics

r

V

friction
"hard core"

periodic boundary conditions

t

F noise

V

hexagonal cell

Langevin thermostat

P  M-Algorithm3

.

geometry

F = m  a

(Mesh-Ewald)

r
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Manning Parameter versus ValenceManning parameter versus valence

LDA

Sim � = 1, v = 3

Sim � = 3, v = 1

PB (�v = 3)

r/r0

f
(r

)

100502010521

1.0

0.8

0.6

0.4

0.2

0.0

counterion condensation is stronger
than in the Poisson-Boltzmann
theory

product �v no longer universal.

discrepancy increases with valence.

theoretical description through a
local correction to the PB free
energy functional possible.

Poisson-Boltzmann neglects correlations. These enhance counterion
condensation, especially for multivalent counterions.
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Overcharging for Multivalent Salt
Overcharging in the presence of salt

Sim

PB

r/r0

f
(r

)

171054321

1.5

1.0

0.5

0.0

� = 4; 2:2-Salt; n̄ = 2.1� 10�2⇥�3.

the charge of the rods gets
repeatedly over-compensated.

reversed charged layers.

charge oscillations are exponentially
damped.

Poisson-Boltzmann fails qualitatively for strongly charged systems

better: integral equations, i.e. ”‘hypernetted-chain”’ (HNC).
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Efficient Algorithms for Long 
Range Interactions

(... All I say will in principle also be
valid for dipolar interactions)
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Electrostatics under pbc
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Electrostatics under periodic boundary conditions

• Periodic boundary conditions (pbc)
eliminate boundary e�ects in bulk
simulations

• Minimum image convention for short
ranged potentials

• Coulomb potential � 1/r is long ranged,
many images contribute significantly

• Sum is only conditionally convergent

• For fully periodic boundary conditions (pbc) many e⇥cient methods
exist:
Ewald (N3/2), P3M (N log N), FMM (N)

• Simulation of surface e�ects: both periodic and nonperiodic
coordinates (2d+h / 1d+2h geometries)



Conditionally ConvergenceConditional convergence: Why the summation order
does matter

Example: The alternating harmonic series:
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Conditionally ConvergenceConditional convergence: Why the summation order
does matter

Example: The alternating harmonic series:
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Conditionally ConvergenceConditional convergence: Why the summation order
does matter

Example: The alternating harmonic series:
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Conditionally ConvergenceConditional convergence: Why the summation order
does matter

Example: The alternating harmonic series:

�⇤
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Electrostatics
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Electrostatics

Coulomb energy

Pair energy summation

U =
lB
2

NX0

i,j=1

qiqj

|rij |

summing up 1/r
Coulomb pair potential
Bjerrum length lB

Bjerrum length

lB =
e2

4⇡✏0✏r kBT

electrostatic prefactor /
inverse temperature
for two unit charges:

1kBT

1l
B

A. Arnold Coulomb interactions 2/26



Electrostatics
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Electrostatics

Coulomb energy

Pair energy summation

U =
lB
2

NX0

i,j=1

qiqj

|rij |

summing up 1/r
Coulomb pair potential
Bjerrum length lB

Potential summation

U =
1
2

NX

i=1

qi�(ri)

potential from solving
Poisson’s equation

r
2�(r) = �4⇡lB

NX

j=1

qj�(rj � r)

equivalent approaches

A. Arnold Coulomb interactions 2/26



Electrostatics in Periodic BC
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Electrostatics in periodic boundary conditions

Coulomb energy

Pair energy summation

U =
lB
2

1X

S=0

X

m2=S

NX0

i,j=1

qiqj

|rij + mL|

conditionally convergent —
summation order important
numerically difficult

Potential summation

U =
1
2

NX

i=1

qi�per(ri)

solve Poisson’s equation
imposing periodic boundaries

U not periodic in coordinates ri U is periodic in coordinates ri

these two calculate something different!

A. Arnold Coulomb interactions 3/26



The Dipole Term
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Where the difference comes from: the dipole term

assume summation in periodic shells
surrounded by polarizable material of dielectric constant ✏1

3

12

13

2

3

2

10 3

2

1

✏ = 1✏ = 1

✏ = ✏1

✏ = ✏1

Pair energy summation
vacuum around: ✏1 = 1

Potential summation
periodic: ✏1 = 1

difference to periodic solution is nonperiodic dipole term

U(d) =
2⇡

(1 + 2✏1)L3

✓X

i

qiri

◆2

metallic boundary conditions ✏1 = 1 always safe
never use ✏1 < 1 for conducting systems

A. Arnold Coulomb interactions 4/26



The Ewald Method
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The Ewald method

P. P. Ewald, 1888 — 1985

Coulomb potential has 2 problems
1. singular at each particle position
2. very slowly decaying

Idea: separate the two problems!
one smooth potential — Fourier space
one short-ranged potential — real space P.

P.
E

w
al

d,
D

ie
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er
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,A
nn

.P
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36

9(
3)

:2
53

,1
92

1

A. Arnold Coulomb interactions 7/26



Splitting the Potential
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Ewald: splitting the potential

charge distribution

⇢ =
X

n2LZ3

NX

i=1

qi�(r � ri � n)

= +
replace � by Gaussians of width ↵�1:

⇢Gauss(r) =
�
↵/

p
⇡
�3 e�↵2r2

�(r) = ⇢Gauss(r) + [�(r)� ⇢Gauss(r)]

A. Arnold Coulomb interactions 8/26



The Standard Ewald Sum
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The Ewald formula

U = U(r) + U(k) + U(s)

with

U(r) =
lB
2

X

m2Z3

X0

i,j

qiqj
erfc(↵|rij + mL|)

|rij + mL|
real space correction

U(k) =
lB

2L3

X

k 6=0

4⇡
k2 e�k2/4↵2

|b⇢(k)|2 Gaussians in k -space

U(s) = �
↵lB
p
⇡

X

i

q2
i Gaussian self interaction

forces from differentiation

Fi = �
@

@ri
U

... coming soon to ESPResSo (on GPU)

A. Arnold Coulomb interactions 9/26



Particle Mesh Ewald Methods
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Mesh-based Ewald methods

R. W. Hockney
J. W. Eastwood

replace k -space Fourier sum by discrete FFT
discrete FT is exact — constant real space cutoff
computational order O(N log N)

most frequently used methods:
P3M: optimal method
PME
SPME R
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A. Arnold Coulomb interactions 10/26

...The Bible...
written by the evangelists

R.W. Hockney, J.W. Eastwood, 1988

• Near field: Standard Ewald
• Far field: replace Fourier space sum by the discrete

FFT on a regular mesh
• Computational order
• P3M (Hockney, Eastwood, 1973)
• The wheel got reinvented: 

PME (Darden et al. 1993)
SPME (Essmann et al., 1995)

Particle-Particle-Particle-Mesh ��Simply the best.....

O(N logN)



Steps of the P3M
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Steps of P3M

1. {ri , qi} ! ⇢(r): interpolate charges onto a grid
(window functions: cardinal B-splines)

2. ⇢(r) ! b⇢(k): Fourier transform charge distribution

3. �̂(k) = Ĝ(k)⇢̂(k): solve Poisson’s equation by multiplication
with optimal influence function Ĝ(k)
(in continuum: product of Green’s function 4⇡

k2 and
Fourier transform of Gaussians e�k2/4↵2)

4. ik�̂(k) ! Ê(k): obtain field by Fourier space differentiation

4. bE(k) ! E(r): Fourier transform field back

5. E(r) ! {ri ,Fi}: interpolate field at position of charges
to obtain forces Fi = qiEi

A. Arnold Coulomb interactions 11/26

Instead of ik-differentiation (4.) I can also use finite difference or
differenciate the pullback function of . This saves two FFT‘sr�



Charge Assignment Function
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Charge assignment

1 q 2q
a

q

q

q q

q 3 4

5q 6

7 8

7
6

5

4

3

2

1

x

M
(P

) (
x
)

76543210

1

0.8

0.6

0.4

0.2

0

interpolate charges onto h-spaced grid

⇢M(rp) =
1
h3

NX

i=1

qiW (p)(rp � ri)

W (p)(r) cardinal B-splines in P3M / SPME

A. Arnold Coulomb interactions 12/26



Optimal Influence Function
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Optimal influence function

minimize the rms error functional

Q[G] :=

Z

h3

dr1

Z

V
dr

⇥
�(G; r, r1)� �(r)

⇤2

with the analytic reference potential

�̂(k) =
4⇡

k2
e�k2/4↵2

leads to

Ĝopt(k) =
P

l2Z3 '̂2(k + ml)Ĝ(k + ml)
⇥P

l2Z3 '̂2(k + ml)
⇤2

with m = L/h

A. Arnold P3M Co. 14/30
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Why to control errors

rms force error �F =
q⌦

(Fexact � FEwald)2
↵
=

s
1
N

NP
i=1

�F 2
i

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  1  2  3  4  5

Δ
F

α

rmax=1, kmax=10
rmax=2, kmax=10
rmax=1, kmax=20

optimal ↵ brings orders of magnitude of accuracy
at given required accuracy, find fastest cutoffs
compare algorithms at the same accuracy

A. Arnold Coulomb interactions 14/26

Why Control Errors ?
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How to Control Errors
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How to: error estimates

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  1  2  3  4  5

Δ
F

α

total error
real space estimate

k-space estimate

Kolafa and Perram:

�Freal ⇡

P
q2

i
p

N
2p

rmaxL3
exp

⇣
�↵2r2

max

⌘

Hockney and Eastwood:

�FFourier ⇡

P
q2

i
p

N

s
Q[Ĝopt(k)]

L3

A. Arnold Coulomb interactions 15/26



Interlaced P3M:
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Improving the performance: interlacing

F(int)
i =

1
2
�
Fi + Fp

i
�

force Fi is average of P3M force and
P3M force with grid shifted by p = (h/2)e
doubles the effort, gains order of magnitude in accuracy
effort can be reduced by using complex-to-complex FFT

A. Arnold Fourier transform-based methods 30/40

Interlacing plus analytical differentiation seems to be the
fastest method currently !

A. Neelov, C. H., J.Chem. Phys. 132, 234103 (2010)
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SCAFACOS

Scalable Fast Coulomb Solver
http://www.scafacos.de
Library of different Coulomb solvers
“Highly scalable”, MPI-parallelized
Common interface for all methods
Developed by groups from Jülich,
Wuppertal, Chemnitz, Bonn and
Stuttgart
Project by the German Research
Ministry (BMBF), officially ended
2011
Open source: Source code on github

Olaf Lenz Scalable Fast Coulomb Solvers 6/24
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Methods

SCAFACOS currently provides 11 method implementations:
DIRECT, EWALD, P3M, P2NFFT, VMG, PP3MG, PEPC, FMM,
MEMD, MMM1D, MMM2D
Features:

For reference purposes (not competitive): DIRECT, EWALD
3d-periodic boundaries: P3M, P2NFFT, VMG, PP3MG, PEPC,
FMM(, EWALD)
Open boundaries: P2NFFT, FMM, PEPC(, DIRECT)
Partially periodic boundaries: P2NFFT, FMM, PEPC, MMM*D
General triclinic boundaries: P3M, P2NFFT

Distinguish Splitting Methods, Hierarchical Methods and Local

Methods (i.e. MEMD)

Olaf Lenz Scalable Fast Coulomb Solvers 7/24

A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver, I. 
Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig, D. Potts, G. 
Sutmann,  Comparison of scalable fast methods for long-range interactions, Phys. Rev. E 
88, 063308 (2013). 



P2NFFT

n Particle-Particle Nonequidistant FFT
n Simplified P3M is a special case of 

P2NFFT
n Same structure = same performance
n Minor mathematical details, simpler 

approach
n Advantage: can be formulated in 3D, 

2D,1D, 0D

50



Multigrid
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Splitting Methods: Multigrid

Solve Poisson equation in far field with
multigrid PDE solver

use different levels of successively
coarser meshes
solve poisson equation on these
meshes by recursively improving the
solution of the coarser mesh

Complexity O(N)

Can be extended to handle periodic
BC
In SCAFACOS: PP3MG (Wuppertal),
VMG (Bonn)

l = 4
l = 3
l = 2
l = 1

Restriction

Prolongation

Smoothing/Solving

Olaf Lenz Scalable Fast Coulomb Solvers 10/24



Barnes-Hut Tree code
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Hierarchical Methods: Barnes-Hut Treecode

Hierarchically cluster charges
Multipole expand these clusters
Compute interaction with far away
cluster multipole moments instead of
single particle charges
Complexity O(N log N)

Can be extended to handle periodic
BC
In SCAFACOS: PEPC (Jülich)

Olaf Lenz Scalable Fast Coulomb Solvers 11/24



Fast Multipole Method
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Hierarchical Methods: Fast Multipole Method

Expand Treecode: let clusters interact
with each other
Put everything on a grid
Complexity O(N)

Can be extended to handle periodic
BC
In SCAFACOS: FMM (Jülich)

Olaf Lenz Scalable Fast Coulomb Solvers 12/24



MEMD for Molecular Dynamics

54F. Fahrenberger, CH, Phys. Rev. E 90, 063304 (2014)



Benchmarks Complexity
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Complexity

P2NFFT, P3M and
FMM are fastest
MEMD and Multigrid
⇡ ⇥10 slower
All algorithms show
(close-to-)linear
behavior
log N-term of P2NFFT
and P3M is invisible
No cross-over with
FMM

104 105 106 107 108 109

#Charges
10�6

10�5

10�4

10�3

Ti
m

e
t/#

C
ha

rg
es

[s
]

MEMD
P2NFFT
P3M
VMG
FMM
PP3MG

Silica melt, "pot  10�3, P = 1 (JUROPA)

Olaf Lenz Scalable Fast Coulomb Solvers 16/24



ScaFaCoS Conclusions
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Conclusions

Performance depends heavily on architecture, compiler and
implementation
. . . and tuning!
⇥2 differences between algorithms are “normal”
Within these limits, FMM, P3M and P2NFFT perform equally good
MEMD slightly worse (⇡ ⇥4), but performs better with larger
systems
Multigrid methods seem to be worse (⇡ ⇥10)
. . . apparently due to large variation in the potential

Olaf Lenz Scalable Fast Coulomb Solvers 24/24



Some Coulomb Solvers
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Fast Methods for Coulomb Interactions
Year Method Complexity Reference
1820 Direct Summation N2 Laplace
1921 Ewald Summation N

3
2 Ewald

1974 Particle-Particle
Particle-Mesh

N log N Hockney, Eastwood

1977 Multigrid Summation N Brandt
1986 Barnes-Hut Treecode N log N Barnes, Hut
1987 Fast Multipole Method N Greengard, Rokhlin
2002 Maxwell Equation

Molecular Dynamics
N Maggs, Rossetto

These methods often are complex.
They do not parallelize easily.
Prefactors and parallel scaling are highly platform and
implementation dependent.

Olaf Lenz Scalable Fast Coulomb Solvers 5/24

N = Number of charges

• Methods often complex
• They do not parallelize easily
• Prefactors and scaling are highly platform and 

implementation dependent
• MC and MD performance differs, check accuracy



Partially Periodic Systems
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Partially periodic systems

partially p. b. c. for slablike systems (surfaces, thin films)
... or for cylindrical systems (rods, nanopores)
dielectric contrasts at interfaces
P3M cannot be employed straightforwardly

A. Arnold Coulomb interactions 17/26
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Dielectric contrasts

lz εm

εt

z

x

εb

q

q

q

q

q∆t

∆t

∆b

∆b

∆b∆t

water

membrane

water

electrode

water

electrode

typical two dimensional systems: thin films, slit pores
material boundaries =) dielectric contrast
take into account polarization by image charges
can be handled by MMM2D

A. Arnold Coulomb interactions 19/26

• 2D periodic: slablike systems, surfaces, thin films, 
membranes, air-water interfaces

• 1D periodic: Needles, rods, nanopores,
• 0D periodic boundaries = open systems

• P3M cannot be employed straightforwardly
• P2NFFT can be formulated to work
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MMM2D and MMM1D
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Another approach: MMM2D far formula

��(r) =
X

k,l2LZ

e��
p

(x+k)2+(y+l)2+z2

p
(x + k)2 + (y + l)2 + z2

=
2
L

X

p2 2⇡
L Z

0

@
X

l2LZ
K0

✓q
�2 + p2

q
(y + l)2 + z2

◆1

A eipx

=
2⇡
L2

X

p,q2 2⇡
L Z

e�
p

�2+p2+q2|z|
p

�2 + p2 + q2
eipx eiqy

=
2⇡
L2

0

@
X

p2+q2>0

efpq |z|

fpq
eipx eiqy + |z|

1

A+
⇡

L2 �
�1 +O�!0(�)

screened Coulomb interaction in limit of screening length 1

other formula for z ⇡ 0
optimal computation time O(N5/3), comparable to Ewald
analogously for 1d, but then O(N2)

A. Arnold Coulomb interactions 18/26

• Convergence factor based summation (limit b -> 0)
• Near formula for z ≈0
• Optimal computation time comparable to Ewald
• Analogous formulae for 1D, but then TCPU ≈

O(N5/3)

O(N2)

A. Arnold, C. H., Chem. Phys. Lett. 354, 324 (2002); 
A. Arnold, C.H., J. Chem. Phys. 123, 144103 (2005)
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2D PBC approx. with 3D PBC
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The method of Yeh+Berkowitz

replicated slab system

slab system
 h

replicated slab system

L
L

z

potential of a charge and its periodic images similar to plate
plates cancel due to charge neutrality

2⇡qi

NX

j=1

�j(|zji + mLz |+ |zji � mLz |) = 4⇡qi nLz

NX

j=1

�j = 0

leave a gap and hope artificial replicas cancel

requires changed dipole term U(d) = 2⇡
L3

✓P
i qizi

◆2

A. Arnold Coulomb interactions 21/26

The Yeh and Berkowitz correction
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The ELC Method
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Electrostatic layer correction (ELC)

Ulc =
⇡

L2

X

k2 2⇡
L Z2

k2>0

NX

i,j=1

qiqj
e|k|zij + e�|k|zij

fpq(efpqLz � 1)
ei(kx xij + ky yij )

error not known a priori — required gap size?
calculate contribution of image layers
subtract numerically ) needs smaller gaps
2-4x faster than plain Yeh+Berkowitz A
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Electrostatic layer correction (ELC)

Ulc =
⇡

L2

X

k2 2⇡
L Z2

k2>0

NX

i,j=1

qiqj
e|k|zij + e�|k|zij

fpq(efpqLz � 1)
ei(kx xij + ky yij )

error not known a priori — required gap size?
calculate contribution of image layers
subtract numerically ) needs smaller gaps
2-4x faster than plain Yeh+Berkowitz A
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A. Arnold Coulomb interactions 22/26

• Calculate contribution of image layers exactly
• Subtract numerically => smaller gap size
• Change summation order with dipole term
• 2-4x faster than plain Yeh-Berkowitz plus full 

error control
A. Arnold, J. de Joannis, C.H., J. Chem. Phys. 117, 2496 (2002)



Dipolar Interactions

n There is also a dipolar P3M available in 
ESPResSo

n Also a 2D+h Version as DLC

62

J. J. Cerdà ,V. Ballenegger, O. Lenz, Ch. Holm, P3M 
algorithm for dipolar interactions, J. Chem. Phys, 129, 
234104 (2008) 
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Include Dielectric Interfaces

Where does this matter?



What does Dielectric Contrast do?

n Water is more polarizable than the solid wall material, leading to 
an induced charge of the same sign

n Force pushing the charge away from the wall

n For air-water interfaces it is the opposite situation

n How to compute the electrostatic force efficiently?

n Use either Image charges or induced charges….  
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Planar Dielectric Interfaces

e = 2

Can be handled by
• ICMMM2D
• ELCIC

• S. Tyagi, A. Arnold, C. H., ICMMM2D: An accurate method to include planar dielectric 
interfaces via image charge summation, J. Chem. Phys.127, 154723 (2007) 

• S. Tyagi, A.  Arnold C. H., Electrostatic layer correction with image charges: A linear 
scaling method to treat slab 2D + h systems with dielectric interfaces, J. Chem. 
Phys.129, 204102 (2008) 
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What about arbitrarily curved interfaces like a nanopore?

ht
tp

://
w

w
w

.ic
p.

un
i-s

tu
ttg

ar
t.d

e

Arbitrarily shaped dielectric surfaces

MMM2D/ELC only handle planar parallel dielectric interfaces
what about a nanopore? vesicle?
cannot be handled by image charges
satisfy boundary constraints for electric field

A. Arnold Coulomb interactions 24/26
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ICC* Algorithm
n Boundary condition for the normal component of 

the electric field:

n can be fulfilled by introducing a charge density:

n Discretization of the surface to boundary 
elements

electric 
Field
normal vector



68

ICC* Algorithm
n Boundary condition for the normal component of 

the electric field:

n can be fulfilled by introducing a charge density:

n Discretization of the surface to boundary 
elements lead to a set of equations

‣ Solved by an iterative scheme

• can be obtained by any Coulomb solver

‣ Periodic boundary conditions automatically fulfilled
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ICC* Algorithm
n Boundary condition for the normal component of 

the electric field:

n can be fulfilled by introducing a charge density:

n Discretization of the surface to boundary 
elements lead to a set of equations

ICC* (Induced Charge Computation) Algorithm:   
S. Tyagi, M. Süzen, M. Sega, M. Barbosa, S. Kantorovich, and
C. Holm, Journal of Chemical Physics 132, 154112 (2010) 
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Salt can Reduce the Dielectric er

0 1 2 3 4
concentration (M)

30

40

50

60

70

80
ε E

Na+ Cl−

εE = 72/(1+0.278c)
Na+ Cl− scaled
K+ I−

B. Hess, C. Holm, N. van der Vegt: PRL 96, 147801 (2006)

All-Atom MD, SPC/E explicit water 



Permittivity can be reduced 
inhomogeneously by 
presence of ions around 
charged objects!

Inhomogeneous Dielectrics
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r2� = �⇢

"
r"r� = �⇢

) r ·D = ⇢ (Gauss law)

r⇥D = 0

Maxwell-like Equations

Lagrangian treatment leads to equations of motion 
for the particles and fields.

• Varying permittivity
• potentials to fields
• most general form

F. FAHRENBERGER AND C. HOLM PHYSICAL REVIEW E 90, 063304 (2014)

important features still hold and the statistical observables are
reproduced correctly. Second, an estimate for the systematic
error is presented and discussed. Third, the effect of handling
the global dipole term in periodic boundary conditions is
shown to be erroneous by a comparison to the classical
Ewald method, paving immediately the way to constructing
a correction term. Fourth, both the initial and the dynamic
part of the extended algorithm are validated against analytical
solutions and simulations. Fifth, the numerical performance of
the algorithm is evaluated and advantages and limitations are
discussed. Finally, we conclude and present a brief outlook on
the future of the MEMD algorithm.

II. EXTENSION OF THE ALGORITHM

Most of the proofs for the extended algorithm go along
the lines of the original introduction by Maggs [27,28] and
Pasichnyk and Dünweg [30]. The general idea will be given,
but the main mathematical steps can be retraced in the
aforementioned publication.

The algorithm consists of the following two parts. Calculat-
ing an initial solution of the Gauss law of electrodynamics on
a lattice. The second part consists of applying and propagating
all temporal changes to said solution within the system.
The initial solution proposed by Pasichnyk for a constant
permittivity only has to be adapted slightly to ensure the correct
result for varying dielectric permittivities.

A scheme to acquire an initial solution is shown in Fig. 1.
First, the charges on each plane are averaged, scaled by the
lattice size and local permittivity, and added to the field on

FIG. 1. (Color online) Recursive scheme for the initial solution
of the E field. The average charge in z plane is scaled and added to
each node, following E(n+1)

z = E(n)
z + qplane/(εa2). Then the charge

qplane is subtracted from each charge in the z plane. Analog with y

lines and the single nodes in x direction.

each node

E(n+1)
z = E(n)

z +
qplane

ε
x,y,n
z a2

, (1)

and the charge qplane is subtracted from each vertex in the zn

plane. The charges in y and x direction are updated accordingly
on lines and vertices, following

E(n+1)
y = E(n)

y + qline

εx,z,n
y a2

, (2)

E(n+1)
x = E(n)

x + qvertex

ε
y,z,n
y a2

. (3)

Summation of the total charge in one cell is given by

qplane + qline + qvertex (4)

and this yields the Gauss law directly, if the (∇·) operator
is defined via finite differences E(n+1) − E(n). An iterative
procedure of energy minimization is equivalent to the second
Maxwell equation ∇ × E = 0 and gives a correct initial
solution. This method of numerical relaxation is not very
efficient but has to be done only once.

Starting from this solution of Gauss’ law, only updates of
the electric field following a constraint have to be applied.
Hereby, we can assume that the time scales of the propagation
speed of the fields and the motion of the particles decouple.
Then the propagation of the fields can be described by an
artificial dynamics, in a Car-Parrinello (CPMD) manner [35].
Analog to Pasichnyk and Dünweg, the most general constraint
for the system is

Ḋ + j − ∇ × !̇ = 0, (5)

with the electric displacement field D = εE, the electric
current density j , and an arbitrary vector field ! as an
additional degree of freedom. From this, the Lagrangian

L =
∑

i

mi

2
v2

i − U + fmass

2

∫
ε(r)!̇

2
d3r − 1

2

∫
D2

ε(r)
d3r

+
∫

A( Ḋ − ∇ × !̇ + j )d3r (6)

is obtained, where the Lagrange multiplier A is used to impose
the kinematic constraint, r is the position, mi and vi are
the particle masses and velocities, respectively, and U is an
additional potential. The prefactor fmass simply denotes the
mass equivalent of the exchange particles, analog to electrons
in CPMD, and later turns out to be related to the wave
propagation speed as 1/c2.

The equations of motion for this Lagrangian L(r,ṙ,!̇,D)
can be calculated using variational calculus. The derivative in
! and Ḋ is zero, and the motion of particles and fields is
defined by

d

dt

∂L

∂ ṙ i

− ∂L

∂ r i

!= 0, (7)

∂L
∂!̇

!= 0, (8)

∂L
∂ D

!= 0, (9)

063304-2

General constraint
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important features still hold and the statistical observables are
reproduced correctly. Second, an estimate for the systematic
error is presented and discussed. Third, the effect of handling
the global dipole term in periodic boundary conditions is
shown to be erroneous by a comparison to the classical
Ewald method, paving immediately the way to constructing
a correction term. Fourth, both the initial and the dynamic
part of the extended algorithm are validated against analytical
solutions and simulations. Fifth, the numerical performance of
the algorithm is evaluated and advantages and limitations are
discussed. Finally, we conclude and present a brief outlook on
the future of the MEMD algorithm.

II. EXTENSION OF THE ALGORITHM

Most of the proofs for the extended algorithm go along
the lines of the original introduction by Maggs [27,28] and
Pasichnyk and Dünweg [30]. The general idea will be given,
but the main mathematical steps can be retraced in the
aforementioned publication.

The algorithm consists of the following two parts. Calculat-
ing an initial solution of the Gauss law of electrodynamics on
a lattice. The second part consists of applying and propagating
all temporal changes to said solution within the system.
The initial solution proposed by Pasichnyk for a constant
permittivity only has to be adapted slightly to ensure the correct
result for varying dielectric permittivities.

A scheme to acquire an initial solution is shown in Fig. 1.
First, the charges on each plane are averaged, scaled by the
lattice size and local permittivity, and added to the field on

FIG. 1. (Color online) Recursive scheme for the initial solution
of the E field. The average charge in z plane is scaled and added to
each node, following E(n+1)

z = E(n)
z + qplane/(εa2). Then the charge

qplane is subtracted from each charge in the z plane. Analog with y

lines and the single nodes in x direction.

each node

E(n+1)
z = E(n)

z +
qplane

ε
x,y,n
z a2

, (1)

and the charge qplane is subtracted from each vertex in the zn

plane. The charges in y and x direction are updated accordingly
on lines and vertices, following

E(n+1)
y = E(n)

y + qline

εx,z,n
y a2

, (2)

E(n+1)
x = E(n)

x + qvertex

ε
y,z,n
y a2

. (3)

Summation of the total charge in one cell is given by

qplane + qline + qvertex (4)

and this yields the Gauss law directly, if the (∇·) operator
is defined via finite differences E(n+1) − E(n). An iterative
procedure of energy minimization is equivalent to the second
Maxwell equation ∇ × E = 0 and gives a correct initial
solution. This method of numerical relaxation is not very
efficient but has to be done only once.

Starting from this solution of Gauss’ law, only updates of
the electric field following a constraint have to be applied.
Hereby, we can assume that the time scales of the propagation
speed of the fields and the motion of the particles decouple.
Then the propagation of the fields can be described by an
artificial dynamics, in a Car-Parrinello (CPMD) manner [35].
Analog to Pasichnyk and Dünweg, the most general constraint
for the system is

Ḋ + j − ∇ × !̇ = 0, (5)

with the electric displacement field D = εE, the electric
current density j , and an arbitrary vector field ! as an
additional degree of freedom. From this, the Lagrangian

L =
∑

i

mi

2
v2

i − U + fmass

2

∫
ε(r)!̇

2
d3r − 1

2

∫
D2

ε(r)
d3r

+
∫

A( Ḋ − ∇ × !̇ + j )d3r (6)

is obtained, where the Lagrange multiplier A is used to impose
the kinematic constraint, r is the position, mi and vi are
the particle masses and velocities, respectively, and U is an
additional potential. The prefactor fmass simply denotes the
mass equivalent of the exchange particles, analog to electrons
in CPMD, and later turns out to be related to the wave
propagation speed as 1/c2.

The equations of motion for this Lagrangian L(r,ṙ,!̇,D)
can be calculated using variational calculus. The derivative in
! and Ḋ is zero, and the motion of particles and fields is
defined by

d

dt

∂L

∂ ṙ i

− ∂L

∂ r i

!= 0, (7)

∂L
∂!̇

!= 0, (8)

∂L
∂ D

!= 0, (9)
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whereL is the Lagrangian density, which by definition satisfies
L =

∫
L d3r . Variation with respect to ṙ i results in

∂L

∂ ṙα
i

= miṙ
α
i + qiA

α(r i),

d

dt

∂L

∂ ṙα
i

= mir̈
α
i + qiȦ

α(r i) + qi

∂Aα

∂r
β
i

ṙ
β
i ,

where the second transformation is a time derivative. Variation
with respect to r i yields

∂L

∂rα
i

= − ∂U

∂rα
i

+ qiṙ
β
i

∂Aβ

∂rα
i

.

Combining these two results and introducing the vector field

B := ∇ × A (10)

provides the equations of motion for the particle

mir̈
α
i = − ∂U

∂rα
i

− qiȦ
α + qiṙ

β
i

(
∂Aβ

∂rα
i

− ∂Aα

∂r
β
i

)

,

mi r̈ i = −∂U

∂ r i

− qi Ȧ + qivi × B, (11)

as expected. The equations of motion for the electromagnetic
fields can be found by varying the Lagrangian density L.
Variation in !̇ and in time gives

∂L
∂!̇

= fmassε0!̇ − ε0∇ × A = fmassε0!̇ − ε0 B,

d

dt

∂L
∂!̇

= fmassε0!̈ − ε0 Ḃ = 0,

fmass!̈ = Ḃ, (12)

1
c2

!̇ = B, (13)

where the natural initial condition !̇(t = 0) = 0 is used in the
last step, and fmass := 1/c2 for convenience. The next variation
in D gives

Ȧ = − D
ε

, (14)

which leads to the more commonly known expression for
Eq. (11). With these two last results, Eqs. (13) and (14), two
more Maxwell equations can be obtained by inserting into the
constraint equation (5), namely Ampère’s and Faraday’s law:

Ḋ = c2∇ × B − j
ε0

, (15)

Ḃ = ∇ × Ȧ = −∇ × D. (16)

This means that simply applying the constraint (5) repro-
duces the complete electromagnetic formalism. It should be
noted that Eqs. (10) and (14) represent nothing more than
the so-called temporal or Weyl gauge in electromagnetism,
in which the scalar potential φ is identically zero, and which
turns out to be the most appropriate gauge for our purposes.

Since the Lagrangian we introduced is constrained, it is
not possible to easily construct a Hamiltonian from it, only
via the Dirac theory of constrained systems. An elementary

construction would be beneficial to simplify further proofs
for the conservation of phase-space volume, energy, and
momentum. However, it is possible to construct a Lagrangian
that is not constrained and produces the exact same equations
of motion. The proofs and details will not be carried out, but
the resulting Lagrangian is

L =
∑

i

mi

2
v2

i − U + ε

2

∫
Ȧ2

d3r

− ε0c
2

2

∫
(∇ × A)2d3r +

∫
A · j d3r. (17)

The equations of motion for the particles and the fields can
be derived from Eq. (17) and the Lagrangian density by the
use of variational calculus. The resulting equations of motion
for the particles and fields from the unconstrained Lagrangian
are

mi r̈ i = −∂U

∂ r i

− qi E + qivi × B, (18)

B = 1
c2

!̇, (19)

Ḋ = c2∇ × B − j , (20)

Ḃ = −∇ × D. (21)

In our implementation, the magnetic part of the Lorentz
force, v × B from Eq. (18), is omitted. This increases the
speed significantly, but makes it impossible to construct an
unconstrained Lagrangian from Eq. (17), and therefore the
Hamiltonian nature of the algorithm does not hold. Momentum
conservation is violated by the amount of momentum that
the virtual photons carry. This is a negligible percentage and
perfect momentum conservation is not important in most
simulated systems since many contain a thermostat. Energy
conservation, however, holds, as can be shown with a pseudo-
Liouville theorem for the Lagrangian, along the lines of [30].
All additional terms that show up due to a spatially dependent
permittivity simply cancel out.

Like in the algorithm for constant background permittivity,
the thermodynamic observables are perfectly reproduced,
since they are not dependent on the speed of light nor the
magnetic-field component. In contrast to the original version,
the partition function in this extended algorithm contains an
extra term for the varying permittivity. The particle momenta
and the vector field A can still be integrated out in a
straightforward way. If we split up the integration of the electric
field in a longitudinal and a transversal component, we end up
with

Z =
∫ N∏

i=1

d r i

∏

r

DD∥(r)DD⊥ (r) δ(∇ · D − ρ(r))

× exp
(

−β

2

∫
d r

D∥(r)2

ε(r)

)
exp

(
−β

2

∫
d r

D⊥ (r)2

ε(r)

)
.

(22)

The integration over the transversal component also only
contributes a factor, and the longitudinal component cancels
with the δ function. This contribution of the transversal
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Maggswellian Dynamics with er(r)
• Naturally formulated on a lattice (=>fast and local)
• Changing speed of light (CPMD) (=> tricky)
• Implemented in ESPResSo as MEMD (=> useful)

ṙi =
pi
mi

ṗi = �@U

@ri
+

ei
"
D(ri )

Ȧ = �D
"

Ḋ = c2 r⇥ (r⇥ A)� j
"

Leads naturally to Maxwell-like equations
A. C. Maggs and V. Rosseto, PRL 88, 196402 (2002).
J. Rottler and A. C. Maggs, PRL 93,170201 (2004).

I. Pasichnyk and B. Dünweg, J. Phys. Cond.Mat. 
16, 3999 (2004). 
F. Fahrenberger, C. Holm, Phys. Rev. E 90, 063304 
(2014)
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MEMD with Variable Dielectric

• permittivity as a vector (differential1-form), taken as the 
difference between adjacent lattice points (harmonic 
average)

F. FAHRENBERGER AND C. HOLM PHYSICAL REVIEW E 90, 063304 (2014)
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(a) Discretization
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(b) ε interpolation

FIG. 2. (Color online) (a) Discretization of the currents, fields,
and permittivities onto a lattice cell. (b) Interpolation of dielectric
permittivity values on the lattice. ε(r) has a position and a direction
(blue arrow). The values for ε1 and ε2 are determined and the value
on the connecting link is set to the average value. If the gradient is
too large, the value is determined by forming the harmonic average.

component is constant for a static dielectric background, but
can vary if the dielectric interfaces are mobile. This gives rise to
thermal Casimir-Lifshitz interactions as discussed by Pasquali
and Maggs [36–38], but the effect will not be discussed further
in this article since we focus on moving charges in static
dielectric backgrounds. The only degrees of freedom now left
are the particle coordinates, which finally lead to

Z =
∫ N∏

i=1

d r i exp
(

−β

2

∫
d r

D(r)2

ε(r)

)
. (23)

This is what is expected from the static case of electromagnetic
interactions.

The lattice discretization in space is done in a way analog
to the original implementation [see Fig. 2(a)], featuring the
same finite difference representations for the gradient (∇·) and
the curl (∇×) operators. The local permittivity values ε can
assume tensorial form, equivalent to a differential two-form.
In our implementation, we reduce the tensor to its diagonal
entries (differential one-form), which merely represents an
optically isotropic medium. The local permittivity therefore
has a value and a direction, and they are placed on the
links of the interpolating grid. The electric displacement field
values D = εE are still stored on the links, although they are
represented by a rotation around these links.

To map given permittivity values, set by an interface or
function, to the lattice, the finite difference between adjacent
grid points is employed. If the difference is significantly bigger
than the values, the link is marked as an interface link. The
values for these interface links are then calculated by taking
the harmonic average

εlink = ε1 · d2

a
+ ε2 · d1

a
, (24)

where ε1 and ε2 are the permittivity values on the adjacent
lattice sites on each side of the interface respectively, d1 and
d2 are the distances of the according lattice site along the link
to the interface, and a is the lattice spacing, as depicted in
Fig. 2(b).

III. SELF-ENERGY INTERACTION

Even in the continuum, the solution of the Maxwell
equations for point charges is singular at the position of the
particle. The point charge carries along with it the electrostatic
energy

1
2

∫

|r−r i (t)|!R

D(r,t)2

ε
d3r ∝

∫ R

0
r2(r−2)2dr =

∫ R

0
r−2dr,

which is a diverging integral. This would mean that the particle
has infinite mass and cannot respond to forces. With a lattice
spacing, a “cutoff” is introduced for this self-interaction, but
still the particle is driven to the center of the cell by the field
created from its own (interpolated) charge. It is, from an energy
point of view, most favorable for the particle to distribute its
charge evenly on all surrounding lattice points, since it then
produces the smallest possible curl (∇ × D) in the cell.

This spurious self-influence is in the original algorithm
corrected by the use of Yukawa potentials. However, if the
permittivity of the system changes within the cell, every
potential based correction scheme fails. However, this problem
can be solved both with a lattice Greens function, or a direct
subtraction scheme.

In our implementation, the permittivity, as it is reduced to
a differential one-form for the above-mentioned reasons, is
placed on the lattice links. Therefore, it remains constant on
the link, allowing us to set up a Green’s function of the form

#r ′G(r − r ′) = − 1
a2

δr,r ′ (25)

if r and r ′ are placed on adjacent lattice sites. For a point
charge, the electrostatic potential can then be found using a
convolution with the Green’s function

φ(r) = q

aεG(r)
, (26)

where we assume that ε remains constant within the cell. This
Green’s function for a point charge on a cubic lattice can
now be solved by a Fourier transform and is limited to the
first Brillouin zone. For an infinitely large lattice, the back
transform yields the integral

G(r) =
( a

2π

)3
∫

k∈BZ

eikr

ε(k)
d3k. (27)

If the Laplace operator on the left-hand side of Eq. (25) is
used to construct a finite-differences operator and applied to
each of the interpolated charges on the lattice, we end up with
a solution of the self-energy influence that can be added up.
This is a well-known scheme for lattices of constant dielectric
permittivity and applies in a straightforward way here if ε does
not change within the cell of each charge [39]. While this is
not suitable for all cases, it can be applied to many and is fairly
fast, since the solution for the given integral only needs to be
calculated once at the beginning of the simulation and it can
be done analytically [40].

Another approach to allow for dielectric variations on
very small scales (within one lattice site) is to use a direct
subtraction scheme. With the assumption that the gradient of
the permittivity, ∇ε(r), is constant on each lattice link, the
influence of the interpolated charges can be directly calculated
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Chance to visit Stuttgart

75

Tutorial:  

„Particle-based Simulations for Hard and Soft Matter“

It takes place at the Institute for Computational Physics, 
Stuttgart University,  08 - 12 October, 2018

To register look at www.espressomd.org or
https://www.cecam.org/workshop-1605.html

http://www.espressomd.org


Wrap up Lecture 1:

76

•Electrostatic Terminology, Flory arguments, 
Blobology
•Cell model, Mean-field theories (PB, DH) to 
describe ionic profiles around charged objects
•Basic simulation methods to describe charged 
systems
•How to simulate long range interactions with pbc

Any Questions??
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