

University of Stuttgart

Germany

1

Dynamics of Charged Soft Matter

Christian Holm

Institut für Computerphysik, Universität Stuttgart Stuttgart, Germany

www.icp.uni-stuttgart.de

- The Lattice-Boltzmann method coupled to MD particles
- Applications:
 - Colloidal electrophoresis
 - Polymer electrophoresis
 - Electrophoresis on "Hairy" Colloids
 - Ion transport through nanopores (with and without a DNA being present)
 - Ionic conductivity of a polyelectrolyte solution

Hydrodynamic Interactions for two Colloids

The yellow particle has a velocity v, whereas the dark particle is at rest.

- a) When the yellow particle moves towards the darker one, it induces a repulsive force F_{12} on the darker particle due to the bow waves
- a) when the darker particle is behind the yellow one, then the induced force F_{12} is attractive since the stern waves follow the brighter particles thus pulling the darker particle behind

The Lattice-Boltzmann Method

Boltzmann equation for

Particle distribution function

 $f(\vec{x}, \vec{p}, t) \qquad \text{kinetic theorie of gases} \\ \frac{d}{dt} f = \nabla_{\vec{x}} f \cdot \dot{\vec{x}} + \nabla_{\vec{p}} f \cdot \dot{\vec{p}} + \partial_t f \\ = \nabla_{\vec{x}} f \cdot \frac{\vec{p}}{m} + \nabla_{\vec{p}} f \cdot \vec{F} + \partial_t f$

Discretisation of time and drive towards local equilibrium BGK

$$f(x, t + \Delta t) = f(x, t) + \frac{1}{\tau} \cdot [f^{eq}(x) - f(x, t)]$$

Full discretisation of time, space and velocities

D3Q19 lattice

The Lattice-Boltzmann Method

Collision (multimode version)

. . .

	mode	meaning	relaxation parameter
18	0	density	0
$\rho = \sum n_i$	1-3	momentum	0
i = 0 18	4-6	bulk stress	finite
$\vec{j} = \sum_{i=0}^{N} n_i \cdot \vec{c}_i$	7-12	sheer stress	finite
	13-18	none	0

B. Dünweg, U. Schiller, and A. J. C. Ladd, Statistical mechanics of the fluctuating Lattice-Boltzmann equation, Phys. Rev. E, 76, 36704, 2007.

The Lattice-Boltzmann Method

Walls in LB via bounce-back rules

Real Particle Coupling to LB

- Frictional coupling of MD particles to Lattice Boltzmann fluid [1]
 - Modified Langevin equation:

$$m\frac{\vec{v}_i}{dt} = \vec{F}_i - \Gamma(\vec{v}_i - \vec{u}_{\rm LB}) + \vec{F}_r(t)$$

- Momentum exchange between immersed particles and fluid
- Total momentum conservation

Hydrodynamic interactions

[1] P. Ahlrichs and B. Dünweg. International Journal of Modern Physics C, 9:1429-1438, 1998.

Current D3Q19 Version with correct fluctuation spectrum due to Schiller, Duenweg implemented in **ESPResSo**

Particles Coupled to Fluid Flow

Electrostatics basic Abbreviations

Bjerrum length
$$\ell_B = \frac{e^2}{4\pi\epsilon_0\epsilon_r k_B T}$$

Debye length
$$\lambda_{\rm D} = \left(4\pi l_{\rm B} N_{\rm A} \sum_i z_i^2 c_i^\infty\right)^{-1/2}$$

Electrolyte Conductivity

Specific Conductivity depends on c

- Debye-Hückel-Onsager (DHO) works for low concentrations (w HI)
- Experimental results of NaCl for different concentrations are well reproduced by primitive model MD/LB simulations!!

Charge stabilized Colloids

The analytical description of charged colloidal suspensions is problematic:

- Long ranged interactions: electrostatics/hydrodynamics
- Inhomogeneous/asymmetrical systems
- Many-body interactions

Alternative: the relevant microscopic degrees of freedom are simulated via Molecular Dynamics!

Explicit particles (ions) with charges
 Implicit solvent approach, but hydrodynamic

interactions of the solvent are included via a

Lattice-Boltzmann algorithm

Colloidal Electrophoresis

 $\vec{F}_{e} : \text{ electric force} \qquad \qquad \vec{E} \qquad \qquad \vec{E} \\ \vec{F}_{d} : \text{ hydrodynamic drag force} \qquad \qquad \vec{F}_{d} : \vec{F}_{e} \qquad \qquad \vec{F$

Electric Double Layer (EDL): *i*) Stern layer (strongly bound counterions) *ii*) Diffuse layer characterized by the Debye length

Electro-osmotic Flow (EOF): Fluid flow generated by the excess charge in the EDL. Counterpart of the electrophoretic flow.

Electrokinetic Equations

Stokes equation:

$$\eta \nabla^2 \vec{u} - \vec{\nabla} P - \sum_{j=1}^N n_j z_j e \vec{\nabla} \psi = \vec{0}$$

Nernst-Planck equation:

$$\lambda_j(\vec{u} - \vec{v}_j) - z_j e \vec{\nabla} \psi - k_{\rm B} T \vec{\nabla} \log n_j = \vec{0}$$

Incompressibility:

$$\vec{\nabla}\cdot\vec{u}=\vec{0}$$

Important boundary condition:

 ζ : Potential at the slip plane relative to the bulk

Electrokinetic Equations: Limits

Hückel limit of no salt ($\kappa R \ll 1$): $\kappa = \lambda_D^{-1}$ $\mu = \frac{Q}{6\pi\eta R} = \frac{2\epsilon}{3\eta}\zeta \qquad \left(\zeta = \frac{Q}{4\pi\epsilon R}\right)$

Helmholtz-Smoluchowski limit of high salt ($\kappa R \gg 1$):

 $\mu = \epsilon \zeta / \eta$

Planar geometry. Valid only for small ζ. $\mu_{red} = 6\pi\eta\ell_B\mu$

 $\zeta_{red} = e\zeta/k_BT$

Numerical Solutions:

Standard Electrokinetic Model (SEM)*,** Poisson-Boltzmann description of the electrostatics First-order linearization and decoupling of the EK equations.

* Wiersema *et al.*, J. Col. Int. Sci. 22, 78-99 (1966).
** O' Brien *et al.*, J. Chem. Soc. Faraday Trans. II 74, 1607-1626 (1978).

... or simply solve the equations with, i.e. COMSOL

Electro-Hydrodynamical Model

charged colloid

- driven system
- (external constant E -field)
- 1 central Lennard-Jones
 (LJ) bead
- 100 LJ monomers on the

surface, connected to a network via FENE bonds

counterions: LJ beads

<u>simulation=> lattice (implicit) hydrodynamics</u> Langevin MD + Lattice-Boltzmann algorithm periodic boundary conditions Ewald sum: P³M

V. Lobaskin, B. Dünweg, CH J. Phys.: Condens. Matter 16, S4063-S4073 (2004)

Ionic Distribution around the Colloid

the ions within the shear plane renormalize the charge Z to Z_{eff}

Mobility as a Function of Charge Z

Mobility is calculated at zero field with the Green-Kubo integral: linear regime

$$\mu = \frac{1}{3k_BT} \sum_i Z_i \int_0^\infty dt \, \langle \vec{v}_c(t) \cdot \vec{v}_i(0) \rangle$$

Comparison to Experiments

V. Lobaskin, B. Dünweg, M. Medebach, T. Palberg, CH, PRL 98, 176105 (2007)

Salt and Concentration Effects

Salt-free simulations at finite Φ can be mapped to simulations including salt

•Successful mapping of simulations of charged colloidal electrophoresis onto experimental values

•Colloidal concentration can be mapped on salt concentration

-Intriguing minimum observed in μ_{red} as function of κR

Why care about electrophoresis?

- Electrophoretic separation of DNA
 - Crucial step is gene analysis
 - Yields characteristic genetic finger prints
- Today: Gel Electrophoresis based on entanglement
 - Widely applicable and reliable
 - Slowed down dynamics leads to long elution times
- Future: Novel separation techniques based on hydrodynamic and chemical interactions
 - Micro-fluidic devices with structured surfaces
 - On-going design and development process

First Goal: Understand free-flow Electrophoresis

Free-Flow Electrophoresis

- Charged polymers move in solution under the influence of an external electric field
- Local force balance leads to constant velocity
 - Electrical driving force
 - Solvent friction force
- Electrophoretic mobility µ
 - Size dependence of µ (N) determines separation
 process

 $= \frac{Q_{\text{eff}}(N)}{\Gamma_{\text{eff}}(N)}$

 ${E}$

Short and long polyelectrolytes

- Short PE chains:
 - Extended rod-like conformation
 - Length dependent mobility
- Long PE chains:
 - Random coil conformations
 - Screening of long range hydrodynamic interactions
 - Length independent mobility (free-draining)

Crossover: ■DNA: N_{FD} ~ 170 bp ■PSS: N_{FD} ~ 100 units

Short and long polyelectrolytes

- Short PE chains:
 - Extended rod-like conformation
 - Length dependent mobility
- Long PE chains:
 - Random coil conformations
 - Screening of long range hydrodynamic interactions
 - Length independent mobility (free-draining)

Crossover:
■DNA: N_{FD} ~ 170 bp
■PSS: N_{FD} ~ 100 units

- No chemical details
 - Charged subgroups connected along a backbone by elastic springs
 - Ions modeled as free mobile charges
- Implicit solvent model
 - continuous dielectric background
 - Explicit charges treated with full electrostatics via P3M in p.b.c.

+

+

ε

- Explicit hydrodynamics by frictionally coupling the beads to a Lattice-Boltzmann fluid
- Can simulate with HI and without HI (Langevin)

Polyelectrolyte-ion-complex

(Self-)Diffusion D
 $D = k_B T / \gamma_{\text{eff}}$ $D = \frac{1}{3} \int_0^\infty d\tau \langle \vec{v}(\tau) \vec{v}(0) \rangle$ Electrophoretic mobility µ

$$\mu = v/E = q_{\text{eff}}/\gamma_{\text{eff}}$$
 $\mu = \langle v_{PE} \rangle/E$

 Zero-field mobility (Green-Kubo):

$$\mu = \frac{1}{3k_BT} \sum_{i} q_i \int_{0}^{\infty} \left\langle \vec{v}_i(0) \cdot \vec{v}_{PE}(\tau) \right\rangle d\tau$$

Simulation parameters

- Mapping on sulfonated polystyrene (PSS)
- All beads have diameter of 2.5 Ångström
- Chain length N=1 ...64
- I_b = 7.1 Ångström (H₂O at 20° C)
- Monomer concentration 100 mMol
- No added salt
- Experimental conditions:
 - Böhme, Scheler, IPF Dresden, PFG-NMR
 - H. Cottet, CNRS Montpellier, Cap. Elec.

Results 1: Diffusion

K. Grass, U Böhme, U. Scheler, H. Cottet, and C. Holm, Phys. Rev. Lett. 100, 096104 (2008)

Electrophoretic mobility

K. Grass, U Böhme, U. Scheler, H. Cottet, and C. Holm, Phys. Rev. Lett. 100, 096104 (2008)

Salt dependence c_s of Mobility

Conclusion on FSE

- Coarse-grained MD with full electrostatic and explicit hydrodynamic interactions reproduce experimental results on bulk electrophoresis of polyelectrolytes, with and without salt
- Also the self-diffusion coefficient of the PE chain is reproduced if we include HI
- Mobility maximum due to hydrodynamic shielding
- Hydrodynamic shielding for short N, constant friction per monomer for long chains due to hydrodynamic screening
 - •K. Grass, U. Böhme, U. Scheler, H. Cottet, C. Holm, Phys. Rev. Lett., **100**, 096104 (2008).
 - •K. Grass, C. Holm, J. Phys.: Condens. Matter 20, 494217 (2008).
 - •K. Grass, C. Holm, Soft Matter 5, 2079 (2009).
Nanopore Examples

Scale Bridging Modelling Strategy

1 nm

The Smeets et al. Experiment

Translocation of 16.5-µm-long dsDNA through a 10nm-diameter and 34-nm-long cylindrical pore

 ΔG , depends on the length of the nanopore. Therefore the *relative* change in conductance, $\Delta G/G$ is measured, because its value no longer depends on the length of the nanopore but only on its diameter,

Smeets experimental Results

Ralph M. M. Smeets, Ulrich F. Keyser, Diego Krapf, Meng-Yue Wu, Nynke H. Dekker, and Cees Dekker. Nano Lett. **6**, 89–95 (2006).

1. Poisson-Nernst-Planck

Poisson 's Equation $\Delta \Phi = -e(z_{\pm}c_{\pm} + z_{-}c_{-})/\varepsilon$ Diffusion Equation $\vec{j}_{\pm} = -D(\vec{\nabla}c_{\pm} - \vec{\nabla}\Phi c_{\pm})$ $\nabla \cdot \vec{j}_{\pm} = 0$

Numerical solution is easy for an infinite cylinder:

- •Poisson-Boltzmann equation in radial direction
- Current proportional to number of ions
- •DNA charged rod model with bare DNA line charge density

1. Poisson-Nernst-Planck

1. Poisson-Nernst-Planck

2. Standard Electrokinetic Model

Poisson 's Equation $\Delta \Phi = -e \left(z_{+}c_{+} + z_{-}c_{-} \right) / \varepsilon$ Diffusion-Convection Equation $\vec{j}_{\pm} = -D \left(\vec{\nabla} c_{\pm} - \vec{\nabla} \Phi c_{\pm} \right) + c_{\pm} \vec{u}$ $\nabla \cdot \vec{j}_{\pm} = 0$

Stokes ' Equation

$$\eta \Delta \vec{u} = -e \left(z_+ c_+ + z_- c_- \right) \vec{\nabla} \Phi + \vec{\nabla} p \qquad \nabla \cdot \vec{u} = 0$$

2. Standard Electrokinetic Model

2. Standard Electrokinetic Model

3. LB/MD Simulation

Lattice-Boltzmann MD does not agree with E-Kin!

- Conductivity depends on ionic concentration (HI and Coulomb)
- Friction effects near walls

Investigations via AA Simulations

Force Field: AMBER03, Water: SPC/E double-stranded DNA closed over PBC, consisting of 20 GC bps, P-Atoms fixed in space, generic pore atoms Electric field 0.2 V/nm applied along pore

Atomistic Simulation

Direct current always larger with DNA inside

Results from AA Simulations

Poly-CG-DNA

Poly-AT-DNA

Semi-flexible CG dsDNA Model

3 beads per bp

Addition of Frictional Coupling

Check of Validity of Model

Comparison of Ip to Experiments

Comparison of μ to Experiments

Mobility as Function of N

71

Salt Dependence of μ_{FD}

Conclusions on dsDNA Model

- AA Simulations in excellent agreement with experimental data
- Main cause of the deficiency of the electrokinetic model is the increased interfacial friction caused by the presence of the DNA
- Electrokinetic model works surprisingly well up to a scale ~ 1 nm
- There is a difference in ion distribution between CG and AT,
- We have a well working CG model for elektrokinetic applications
- Further studies on the way....
 - S. Kesselheim, W. Müller, C. Holm, Phys. Rev. Lett. 112, 018101 (2014);
 - F. Weik, S. Kesselheim, C. Holm, JCP 145 194106 (2016);
 - T. Rau, F. Weik, C. Holm, Soft Matter 13, 3918 (2017)

Inhomogeneous Dielectrics

The Implicit Solvent Model

- Water is highly polar, i.e. $\varepsilon_r = 78$
- For dynamics we have to add hydrodynamical interactions, i.e. DPD, LB, MPCD,....

The Implicit Solvent Model

• Dielectric interfaces are basically everywhere where there are interfaces

The Implicit Solvent Model

- Permittivity reduced by presence of ions
- Homogeneous dielectric => heterogeneous dielectric

ϵ_r depends on salt concentration

B. Hess, C. Holm, N. van der Vegt: PRL 96, 147801 (2006) 78

- How does the dielectric permittivity change
 ... in close vicinity of highly charged objects?
- with varying salt concentration?

- How do these features affect the behavior of static and dynamic properties of charged macromolecules?
- How can I model this?

Colloid with different ε-profiles

Dielectric, charged colloid (Z = 30e - 90e) R=4nm and D_{ion} = 0.45 nm

salt solution 20-60 mMol

Method

- MC-simulation: energy
- series of mirror charges
- able to deal with • piecewise harmonic functions

MD-simulation: force electric and magnetic fields that propagate arbitrary permittivity on a lattice link

F. Fahrenberger, Z. Xu, C. Holm, J. Chem. Phys. **141**, 064902 (2014)

Maxwell-like Equations

A. C. Maggs and V. Rosseto, PRL **88**, 196402 (2002). I. Pasichnyk and B. Dünweg, J. Phys. Cond.Mat. **16**, 3999 (2004).

$$\nabla \varepsilon \nabla \phi = -\rho$$

$$\Rightarrow \nabla \cdot \mathbf{D} = \rho \quad (Gauss law) \quad \mathbf{D} = \varepsilon \mathbf{E},$$

$$\nabla \times \mathbf{D} = 0 \quad \cdot \text{Varying permittivity}$$

$$\cdot \text{ potentials to fields}$$

$$\cdot \text{ most general form}$$

General constraint

$$\dot{\boldsymbol{D}} + \boldsymbol{j} - \boldsymbol{\nabla} \times \dot{\boldsymbol{\Theta}} = 0$$
 $\boldsymbol{B} = \frac{1}{c^2} \dot{\boldsymbol{\Theta}}_{i}$

Lagrangian treatment leads to equations of motion for the particles and fields.

Maggswellian Dynamics with $\varepsilon_r(r)$

- Naturally formulated on a lattice (=>fast and local)
- Changing speed of light (CPMD) (=> tricky)
- Implemented in ESPResSo as MEMD (=> useful)

Leads naturally to Maxwell-like equations

A. C. Maggs and V. Rosseto, PRL 88, 196402 (2002). J. Rottler and A. C. Maggs, PRL 93,170201 (2004). m_i $= -\frac{\partial U}{\partial \mathbf{r}_i} +$ $-\frac{e_i}{-}\mathbf{D}(\mathbf{r}_i)$ **p**_i I. Pasichnyk and B. Dünweg, J. Phys. Cond.Mat. **16**, 3999 (2004). F. Fahrenberger, C. Holm, Phys. Rev. E 90, 063304 (2014) \mathcal{E} $\dot{\mathbf{D}} = c^2 \nabla \times (\nabla \times \mathbf{A}) - \frac{\mathbf{J}}{c}$ 83

MEMD with Variable Dielectric

 permittivity as a vector (differential1-form), taken as the difference between adjacent lattice points (harmonic average)

Results for the Counterion RDF

 $C_s = 60 \text{ mMol}$
Coion Depletion (Q=30, c_s=20 mMol)

- Finite coion density at surface for flat and step model
- Zero coion density at surface for **ramp** model

Far-Field Properties Change

Intermediate Conclusion

- MEMD has been tested on many other systems
- Both methods, HIM and MEMD, agree very well
- Born self-energy term can get very big
- Dielectric properties around colloids matter, in the near region but also in the far-field!
- The dielectric gradient is important, not so much the sharp jump!
- MEMD is a completely local algorithm (good for parallelization)
- Almost as fast as P3M (particle-mesh-Ewald)

We now know it works...

- Apply it to charged macromolecules (polyelectrolytes)
- investigate the influence of heterogeneous dielectric environment on electrokinetic properties

Charged Rod Model

- MD simulations with MEMD
- polyelectrolyte with charge -1
- monomers fixed in space
- no additional salt

ϵ_r depends on salt concentration

B. Hess, C. Holm, N. van der Vegt: PRL 96, 147801 (2006) ₉₁

Adapt ϵ via iterative Procedure

- permittivity 2 "inside" the rod
- mapped, varying permittivity outside, depending on the radial counterion distribution
- iterative changes in salt concentration

Result: Interfacial Repulsion

Adaptive Scheme for Flexible PE

- calculate salt concentration "on the fly"
- all charges are taken into account
- surrounding 7³ cells, weighted
- update every 10 time steps
- overlap results in sufficiently smooth changes₉₅

Method Comparison

- qualitative changes compared to PB
- Counter ions pushed away from polyelectrolyte, electrokinetic properties might be different!
- consistent with all-atom MD

Measure Equivalent Conductivity

Comparison to Experiments

Comparison to Experiments

Try Varying ϵ Method with MEMD.....

Equivalent Conductivity

Local Permittivity around the PE

F. Fahrenberger, O. Hickey, J. Smiatek, C. Holm, Phys. Rev. Lett. 115, 118301 (2015)

Conclusions on Inhom. Dielectrics

- Influence of dielectric mismatches investigated: Important for coarse-grained models with implicit water
- For permittivity gradients we find a repulsion of counterions at close distances (Born energy)
- Find quantitative changes in far field properties
- Find qualitative changes in electrokinetic properties
- Needed for quantitative predictions

Acknowledgements

F. Weik, S. Kesselheim, S. Raafatnia, O.W. Hickey, F. Fahrenberger, G. Rempfer, Z. Xu, K. Grass, B. Dünweg, V. Lobaskin, U. Schiller, T. Palberg, U. Keyser,...

www.espressomd.org

www.gromacs.org

€€: EXC SimTech, DFG, Volkswagen Fd.

Dynamische Simulation von Systemen mit großen Teilchenzahlen