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Outline Lecture 2

n The Lattice-Boltzmann method coupled to MD 
particles

n Applications:
n Colloidal electrophoresis
n Polymer electrophoresis
n Electrophoresis on “Hairy” Colloids
n Ion transport through nanopores (with and without a 

DNA being present)
n Ionic conductivity of a polyelectrolyte solution



3

Intro to Dynamics



The yellow particle has a velocity v, whereas the dark particle is at rest. 

a) When the yellow particle moves towards the darker one, it induces a 
repulsive force F12 on the darker particle due to the bow waves

a) when the darker particle is behind the yellow one, then the induced force
F12 is attractive since the stern waves follow the brighter particles thus
pulling the darker particle behind

Hydrodynamic Interactions for two Colloids
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Brief introduction into Lattice-Boltzmann 12/23

Particle distribution function

Discretisation of time and drive towards local equilibrium

Full discretisation of time, space and velocities

f x , p ,t 
d

dt
f =∇x f⋅̇x∇p f⋅̇p∂t f

         =∇x f⋅
p
m
∇p f⋅F∂t f

f  x ,t t = f x , t 
1


⋅[ f eq x − f  x , t ]

D3Q19 lattice

The Lattice-Boltzmann Method

BGK

Boltzmann equation for 
kinetic theorie of gases



  

Brief introduction into Lattice-Boltzmann 13/23

Streaming

Collision (multimode version)

=∑
i=0

18

ni

j=∑
i=0

18

ni⋅ci

...

mode meaning relaxation parameter

0 density 0

1-3 momentum 0

4-6 bulk stress finite

7-12 sheer stress finite

13-18 none 0

The Lattice-Boltzmann Method

B. Dünweg, U. Schiller, and A. J. C. Ladd, Statistical mechanics of the fluctuating Lattice-Boltzmann equation, Phys. 

Rev. E, 76, 36704, 2007.
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Brief introduction into Lattice-Boltzmann 14/23

The Lattice-Boltzmann Method
Walls in LB via bounce-back rules
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Particle Coupling to LB
n Frictional coupling of MD particles to Lattice 

Boltzmann fluid [1]
n Modified Langevin equation:

n Momentum exchange between immersed particles 
and fluid

n Total momentum conservation

Hydrodynamic interactions

[1] P. Ahlrichs and B. Dünweg. International Journal of Modern Physics C, 9:1429-1438, 1998.

Current D3Q19 Version with correct fluctuation spectrum due to Schiller, Duenweg 
implemented in ESPResSo



Particles Coupled to Fluid Flow



Electrostatics basic Abbreviations

n Bjerrum length

n Debye length

12

`B =
e2

4⇡✏0✏rkBT



Electrolyte Conductivity
+

-
+

+

+
-

-

-

-

+

E

Relaxation Effect

+ +

Electrophoretic Effect
+

-

hydrodynamic 
Interaction

Onsager 1927

Specific conductivity
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Specific Conductivity depends on c 

• Debye-Hückel-Onsager (DHO) works for low concentrations (w HI)
• Experimental results of NaCl for different concentrations are well 

reproduced by primitive model MD/LB simulations!!



Applications
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Charge stabilized Colloids
The analytical description of charged colloidal 
suspensions is problematic:
n Long ranged interactions: 
electrostatics/hydrodynamics
n Inhomogeneous/asymmetrical systems
n Many-body interactions

Alternative: the relevant microscopic degrees of freedom are 
simulated via Molecular Dynamics!

●Explicit particles (ions) with charges

●Implicit solvent approach, but hydrodynamic 

interactions of the solvent are included via a 

Lattice-Boltzmann algorithm

e
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hydrodynamic drag force

electric force

Steady 
State:

Colloidal Electrophoresis

+
`

Electric Double Layer (EDL):
i) Stern layer (strongly bound counterions)
ii) Diffuse layer characterized by the Debye length

Electro-osmotic Flow (EOF): 
Fluid flow generated by the excess charge in the EDL.
Counterpart of the electrophoretic flow.
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Stokes equation:

Nernst-Planck equation:

Incompressibility:

Potential at the slip plane relative to the bulk
Important boundary condition:

Electrokinetic Equations 



Hückel limit of no salt (          ):  

Helmholtz-Smoluchowski limit of high salt (          ):  

Numerical Solutions:

Standard Electrokinetic Model (SEM)*,**
Poisson-Boltzmann description of the electrostatics
First-order linearization and decoupling of the EK equations. 

Planar geometry.
Valid only for small ζ.

* Wiersema et al., J. Col. Int. Sci. 22, 78-99 (1966).
** O�Brien et al., J. Chem. Soc. Faraday Trans. II 74, 1607-1626 (1978).

µred = 6⇡⌘`Bµ

Electrokinetic Equations: Limits

⇣red = e⇣/kBT

 = ��1
D

… or simply solve the equations with, i.e. COMSOL



Electro-Hydrodynamical Model
charged colloid

n driven system  
(external constant E –field)
n 1 central Lennard-Jones 

(LJ) bead 
n 100 LJ monomers on the 

surface, connected to a 
network via FENE  bonds
ncounterions:   LJ  beads

V. Lobaskin, B. Dünweg, CH J. Phys.: Condens. Matter 16,  S4063-S4073 (2004)

simulation=> lattice (implicit) hydrodynamics
Langevin MD + Lattice-Boltzmann algorithm
periodic boundary conditions
Ewald sum: P3M



the ions within the shear plane renormalize the charge 
Z to Zeff

Ionic Distribution around the Colloid



Mobility as a Function of Charge Z

Mobility is calculated at 
zero field with the Green-
Kubo integral: linear regime

influence of 
comoving 
counterions

counterion 
condensation



Comparison to Experiments

ZEff=20-30, R = 2.2 nm

V. Lobaskin, B. Dünweg,M. Medebach,T. Palberg, CH, PRL 98, 176105 (2007)

)(4 ,
2

OHHeffMsaltB nZnn ++= !pk



Salt and Concentration Effects

Salt-free simulations at finite F can be mapped to 
simulations including salt



Conclusions

•Successful mapping of simulations of charged colloidal
electrophoresis onto experimental values

•Colloidal concentration can be mapped on salt
concentration

•Intriguing minimum observed in µred as function of kR



Why care about electrophoresis?
n Electrophoretic separation of DNA

n Crucial step is gene analysis
n Yields characteristic genetic finger prints

n Today: Gel Electrophoresis based on 
entanglement 
n Widely applicable and reliable
n Slowed down dynamics leads to long 

elution times
n Future: Novel separation techniques 

based on hydrodynamic and chemical 
interactions
n Micro-fluidic devices with structured 

surfaces
n On-going design and development 

process

First Goal: Understand free-flow Electrophoresis



Free-Flow Electrophoresis
n Charged polymers move in 

solution under the 
influence of an external 
electric field

n Local force balance leads 
to constant velocity
n Electrical driving force
n Solvent friction force

n Electrophoretic mobility µ
n Size dependence of µ (N)

determines separation 
process

(N)
(N)



Short and long polyelectrolytes
n Short PE chains:

n Extended rod-like 
conformation

n Length dependent mobility
n Long PE chains:

n Random coil 
conformations

n Screening of long range 
hydrodynamic interactions

n Length independent 
mobility (free-draining)

N

µ(
N
)

NFD

Free-
draining

Crossover:

§DNA: NFD ~ 170 bp

§PSS: NFD ~ 100 units

Experimental observations:



Short and long polyelectrolytes
n Short PE chains:

n Extended rod-like 
conformation

n Length dependent mobility
n Long PE chains:

n Random coil 
conformations

n Screening of long range 
hydrodynamic interactions

n Length independent 
mobility (free-draining)

N

µ(
N
)

NFD

Free-
draining

Crossover:

§DNA: NFD ~ 170 bp

§PSS: NFD ~ 100 units

Experimental observations:
Not understood



Model

n No chemical
details
n Charged

subgroups
connected
along a backbone by elastic springs

n Ions modeled as free mobile charges 
n Implicit solvent model

n continuous dielectric background 
n Explicit charges treated with full electrostatics via 

P3M in p.b.c.
n Explicit hydrodynamics by frictionally coupling the 

beads to a Lattice-Boltzmann fluid
n Can simulate with HI and without HI (Langevin)



Polyelectrolyte-ion-complex

E
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Observables

n Zero-field mobility 
(Green-Kubo): 

µ =
1

3kBT
qi

!vi (0) ⋅
!vPE (τ ) dτ

0

∞

∫i∑

n (Self-)Diffusion D

n Electrophoretic mobility µ
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Simulation parameters

n Mapping on sulfonated polystyrene (PSS)
n All beads have diameter of 2.5 Ångström
n Chain length N=1 …64
n lb = 7.1 Ångström (H2O at 20° C)
n Monomer concentration 100 mMol
n No added salt
n Experimental conditions:

n Böhme, Scheler, IPF Dresden, PFG-NMR
n H. Cottet, CNRS Montpellier, Cap. Elec.



Results 1: Diffusion

K. Grass, U  Böhme, U. Scheler, H. Cottet, and C. Holm, Phys. Rev. Lett. 100, 096104 (2008)



Electrophoretic mobility

K. Grass, U  Böhme, U. Scheler, H. Cottet, and C. Holm, Phys. Rev. Lett. 100, 096104 (2008)

No HI

Effect of HI



with without

hydrodynamical interactions (HI)

Independent. of cs

Salt dependence cs of Mobility 

Maximum reproduced No maximum



Conclusion on FSE

n Coarse-grained MD with full electrostatic and explicit 
hydrodynamic interactions reproduce experimental 
results on bulk electrophoresis of polyelectrolytes, with 
and without salt

n Also the self-diffusion coefficient of the PE chain is 
reproduced if we include HI

n Mobility maximum due to hydrodynamic shielding 

n Hydrodynamic shielding for short N, constant friction per 
monomer for long chains due to hydrodynamic screening
•K. Grass, U. Böhme, U. Scheler, H. Cottet, C. Holm, Phys. Rev. Lett., 100, 096104 (2008).

•K. Grass,  C. Holm, J. Phys.: Condens. Matter 20, 494217 (2008).

•K. Grass,  C. Holm, Soft Matter 5, 2079 (2009).
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Electric Current

Nanopore Examples

nconductivity 
measurements can 
reveal bp translocation of 
ssDNA
nRecognition of binding 
sites of proteins to DNA

solid state nanopores
Cees Dekker, Delft,
many others here…



L

t

atomistic

coarse-grained

continuum

1 nm

10 nm

100 nm

Scale Bridging Modelling Strategy
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The Smeets et al. Experiment 

Translocation of 16.5-μm-long dsDNA through a 10-
nm-diameter and 34-nm-long cylindrical pore

∆G, depends on the length of the nanopore. Therefore 
the relative change in conductance, ∆G/G is measured, 
because its value no longer depends on the length of 
the nanopore but only on its diameter,

Having demonstrated the feasibility of addressing indi-
vidual nanotubes, Liu et al. proceeded to show that short
oligomers of single-stranded DNA, which are thin enough to
fit within the bore of a nanotube, could also be transported in
this manner. The translocation of DNA was elegantly
confirmed by polymerase chain reaction (PCR). Remarkably,
translocation only occurred through the “anomalous”, high-
ionic-conductance metallic nanotubes. The transport of DNA
was also marked by transient signatures in the ionic current.
Firstly, a slow, continuous increase in the background current
was observed. Secondly, a large spike of current occurred at
random time intervals, and each such spike was immediately
followed by a steplike decrease of the background current.
Comparison of the PCR and transport data indicates that
each spike corresponds to the transport of a few tens of DNA
molecules, thus suggesting that DNA is somehow stored in the
nanotube for extended periods of time.

These results differ markedly from observations in con-
ventional nanopores, where passage of a DNA molecule
through the pore occurs swiftly because the electric field that
drives the ionic current also pulls at the DNA. Under suitable
conditions, translocation in conventional nanopores is also
accompanied by a “spike” in the current. Perhaps counter-
intuitively, this current is not primarily due the negative
charge of the DNA, but rather, the DNA carries with it an
atmosphere of compensating, positively charged ions. As
shown in Figure 1a, transport of these ions along the DNA

provides an additional path for current when the DNA is in
the pore. In the experiments carried out by Liu et al., the
DNA oligomers are instead much shorter than the length of
the nanotube, thus precluding a single DNA molecule from
“short-circuiting” the whole channel. The observed slow rise
of the background current could instead be the more gentle
contribution to the ionic conductance from a larger number of
DNA molecules that slowly build up inside the nanotube
(Figure 1b), only to be released simultaneously in “spike”
events.

The latter observation leads to the question of why the
DNA does not quickly flow down the nanotube as it does in a
conventional nanopore experiment. Several elements are

likely to play a role in this effect. Firstly, single-stranded DNA
is known to bind to (the outside of) carbon nanotubes,[7] which
could lead to the inside of the nanotube to be coated with
DNA. This effect alone does not explain the cataclysmic
“spike” events, however. Secondly, passing an ionic current
through a nanochannel whose walls are discontinuously
charged causes extensive, nonlocal redistribution of ions,
with regions of enrichment or depletion of both cations and
anions.[8] As DNA itself is highly charged, similar focusing
might contribute to its accumulation inside the nanotube. An
indication of such ionic redistributions is rectification of the
ionic current. Current rectification was indeed observed in the
experiments reported by Liu et al., thus rendering this
conjecture plausible. Thirdly, transport may be influenced
by the fact that the nanotubes themselves are highly
conducting. Electrons inside the nanotube can rearrange so
as to screen out an externally applied electric field, thus
reducing the electric force on both ions and DNA inside the
nanotube. The extent of the screening depends in part on the
relation between the electrons! chemical potential and net
charge density. As this relation differs for metallic and
semiconducting nanotubes, screening might contribute to
giving metallic nanotubes their unique properties for ionic
transport.

An understanding of the interplay between specific
interactions, screening, and the electronic properties of
carbon nanotubes represents a new opportunity to test our
knowledge of ion and polyelectrolyte transport on the
nanoscale. In terms of new functionality, the unforeseen
dependence of ion and DNA transport on electronic proper-
ties is intriguing. As it is possible to electrostatically dope
semiconducting nanotubes to essentially turn them into
metals, one can envision devices in which an electrostatic
potential is used to switch DNA translocation on or off.
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Figure 1. a) Sketch of DNA translocation through a solid-state nano-
pore. Positively charged counterions migrating along the DNA can
increase the ionic current. b) Probable situation in a carbon nanotube.
Short DNA oligomers cannot bridge the two ends of the nanotube but
instead accumulate inside, therefore leading to counterion enrichment.

Highlights
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Ralph M. M. Smeets, Ulrich F. Keyser, Diego Krapf, Meng-Yue Wu, 
Nynke H. Dekker, and Cees Dekker. Nano Lett. 6, 89–95 (2006).

c in mol/l

Smeets experimental ResultsAssuming thermodynamic equilibrium, the concentration of
H+ ions near the surface is set by the local electrostatic
potential. This potential drives the equilibrium of the
chemical reaction and, hence, determines the amount of
surface charge present. Behrends and Grier27 derived a
relationship between the potential at the no-slip plane (!
potential) and the surface-charge density, σ, taking into
account surface reactivity

where kBT represents the thermal energy, Γ is the surface
density of chargeable sites, pK is the equilibrium constant,
and C is the capacitance of the Stern layer. An additional
relationship between ! and σ is given by the Grahame
equation, which couples the electrostatic potential and the
charge in the diffusive layer

where ϵϵ0 denotes the permittivity of the solution and κ-1 is
the Debye screening length (equal to κ2 ) 2e2nKCl/kBTϵϵ0).
Combining eqs 3 and 4 yields the surface charge as a function
of the potassium chloride concentration. Recently, this model
was used successfully by Van der Heyden et al. to model
streaming currents in SiO2 nanochannels as a function of
salt concentration.28 In the inset to Figure 2b, we plot |σ| as
a function of potassium chloride concentration using the
parameters given in ref 28. When taking into account the
chemical reactivity of the surface, the surface-charge density
shows a monotonic decrease by more than 1 order of
magnitude.
The varying surface charge obtained can be substituted

into eq 1 to determine the salt-dependent conductance of a
nanopore. The result is shown by the red line in Figure 2b.
The dependence of the surface charge on the potassium
chloride concentration, as predicted by the chemical equi-
librium model, has a large impact on the nanopore conduc-
tance. As mentioned before, the conductance is dominated
by bulk behavior in the high-salt regime. However, for
potassium chloride concentrations below ∼100 mM, the
calculated conductance strongly deviates from both the bulk
behavior and from the model that assumes a constant surface-
charge density. The simple model presented here is remark-
ably consistent with the experimentally observed concen-
tration dependence of the conductance. Upon adopting the
parameters from literature and without the need of any fitting
parameters, the model excellently describes the gradual
decrease in conductance as the potassium chloride concentra-
tion is varied over the full range of salt concentrations.
DNA Translocation through Nanopores at Various Salt

Concentrations. The salt dependence of DNA translocation
is addressed with a model that considers two competing
effects. On one hand, the conductance is decreased because
of the volume that is occupied by the DNA.29,30 In other

words, the introduction of the DNA strand into the nanopore
affects the bulk conductance by decreasing the number of
charge carriers available for ionic transport. On the other
hand, the counterions shielding the charge of the DNA
backbone add a positive contribution to the ionic current.
The DNA molecule introduces a cloud of mobile counterions
into the pore, thereby increasing the number of charge
carriers available for ionic transport.21,22 Taking both effects
into account, we can express the change in conductance, ∆G,
due to DNA translocation as

where dDNA (2.2 nm) represents the diameter of the molecule,
µK
* is the effective electrophoretic mobility of potassium
ions moving along the DNA, and ql,DNA

* is the effective
charge on the DNA per unit length, which is assumed to be
constant. Because the left-hand term, expressing the change
in bulk conductance, depends on nKCl, we can expect a linear
relationship for ∆G(nKCl) (as indeed observed experimentally,
see Figure 4a) and, hence, a crossover point at which
∆G ) 0.
Free parameters µK

*ql,DNA
* and Lpore in eq 5 can be

obtained from the linear fit describing the data (Figure 4a).
We obtain µK

*ql,DNA
* ) (2.09 ( 0.06) × 10-17 m/Ω and Lpore

) 34 ( 2 nm. The error denotes the standard deviation
resulting from the fitting procedure. The value found for the
length of a nanopore appears reasonable, considering the
geometrical considerations sketched in Figure 1c.31
We can compare the effective electrophoretic mobility of

potassium ions and the effective charge on the DNA per unit
length to values reported in the literature. If we assume that
µK
* equals the bulk ionic mobility, µK, then we can extract
an effective charge on the DNA per unit length of ql,DNA

* )
0.58 ( 0.02 electron charges per basepair. This indicates a
charge reduction of 71 ( 2% of the bare charge of 2e- per
basepair. Values reported in the literature for the effective
charge on the DNA have been extracted previously from
indirect measurements and vary widely.32-34 With a direct
measurement, the effective charge of the DNA was deter-
mined recently by Keyser et al.,35 which yielded ql,DNA

* )
0.53 ( 0.05 electron charges per basepair, a value that
compares well to the value reported here. Alternatively, one
could assume a charge on the DNA of 2e- per basepair and
extract a reduced value for the effective mobility of
the counterions of the DNA equal to (2.22 ( 0.06) ×
10-8 m2/Vs.
The models developed above for G and conductance

changes, ∆G, due to DNA translocation can be compared
to the measured relative conductance change, ∆G/G (Figure
4b). Because of the limited salt range probed, the data do
not discriminate well between models of constant or salt-
dependent surface-charge density. We combine eqs 1, 3, 4,
and 5 to calculate the expected ∆G/G. This is shown in
Figure 4b by the red line, using the same parameters as Van
der Heyden et al.28 and the product of µK

*ql,DNA
* found

above. The model gives a quite good description of the data.36

!(σ) )
kBT
e ln( -σ

eΓ + σ) +
kBT ln(10)

e (pK - pH) - σ
C (3)

σ(!) )
2ϵϵ0kBTκ

e sinh( e!2kBT) (4)

∆G ) 1
Lpore (-

π
4 dDNA

2 (µK + µCl)nKCl e + µK
*ql,DNA

* ) (5)

94 Nano Lett., Vol. 6, No. 1, 2006

Heuristic model fit



Poisson�s Equation

Diffusion Equation

Numerical solution is easy for an infinite cylinder: 
•Poisson-Boltzmann equation in radial direction
•Current proportional to number of ions
•DNA charged rod model with bare DNA  line charge 
density

1. Poisson-Nernst-Planck



1. Poisson-Nernst-Planck
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1. Poisson-Nernst-Planck

-0.08

 0

 0.08

 0.16

 0  0.2  0.4  0.6  0.8  1

∆
  

G
 /

 G

c in mol/l

Smeets et al. Exp
Smeets et al. Model

PNP



Poisson�s Equation

Diffusion-Convection Equation

Stokes� Equation

2. Standard Electrokinetic Model



2. Standard Electrokinetic Model

-0.08

 0

 0.08

 0.16

 0  0.2  0.4  0.6  0.8  1

∆
  
G

 /
 G

c in mol/l

Smeets et al. Exp
Smeets et al. Model

PNP



E-Kin shows larger DG/G
Reason: EOF enhances current!
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2. Standard Electrokinetic Model
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3. LB/MD Simulation



Lattice-Boltzmann MD does not agree with E-Kin!

• Conductivity depends on ionic concentration (HI and 

Coulomb)

• Friction effects near walls

3. LB/MD Simulation
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6.76 nm 15 nm

15
 n

m
5 

nm

V A
cis trans

Force Field: AMBER03, Water: SPC/E
double-stranded DNA closed over PBC,consisting of 20 GC 
bps, P-Atoms fixed in space,  generic pore atoms
Electric field 0.2 V/nm applied along pore

Investigations via AA Simulations



Atomistic Simulation
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Results from AA Simulations
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65Poly-CG-DNA Poly-AT-DNA
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Semi-flexible CG dsDNA Model

3 beads per bp
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Fig. 6 Representation of the CG DNA model and the additional
friction coupling beads. The yellow beads are the bb beads, the blue
beads are the bp beads, and the transparent pink beads are the fluid
friction coupling beads.
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Fig. 7 Plot of the counterion (CI) velocity profiles of the three
different models. The additional friction between the DNA and the
ions dampens the ion mobilities as function of the distance to the
DNA. The AA data is taken from Ref. 21, the CI there are K+.

of our CG DNA model. Since the overall net movement of the
ions is in the direction along the cylinder (arbitrarily chosen as
the z-direction), the calculation of the current I reduces simply
to

I =
Z

A
dAAA jjj = 2p

Z
R

0
dr r jz . (7)

Here jjj denotes the current density ( jx, jy, jz)T. In our simu-
lations the electric field, and therefore the voltage U , is kept
constant, which causes the conductance

G =
I

U
(8)

to be proportional to the current. The current modulation
DG/G compares the current through the nanopore including
the DNA strand with that of a pore without the DNA. The cur-
rent modulation as obtained from the experiment together with
the AA data and our model simulations is shown In Fig. 9.
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Fig. 8 Velocity of the coions (CoI). The data of the simple model
shows a large trend in the opposite field direction caused by the high
fluid velocity. The AA data shown in this graph are from Ref. 21, the
CoI there are Cl�.

As expected from the velocity profiles, the agreement of the
current modulation of our new model is good compared to the
experiment and the AA simulations.

3.2 Bulk model

3.2.1 Persistence LengthThe persistence length is ar-
guably the most important property of semi-flexible polymers,
such as dsDNA, and should be correct in any CG DNA model.
The persistence length lp is the correlation length between the
tangent vectors ttt(s) and ttt(0) along the chain:

httt(0) ttt(s)i= hcos(q)i ⌘ exp
✓
� s

lp

◆
. (9)

Here q is the included angle between the tangent vectors and
s is the length along the contour of the DNA. In our model
the bond angle parameter K

bp
ba determines the non-electrostatic

contribution to the persistence length of the DNA model.
The overall performance, including electrostatic interactions,
can be checked by comparing the salt concentration depen-
dent data on the measured dsDNA persistence length from
Brunet et al. 3 to data generated with our model. The per-
sistence length is determined by fitting the exponential decay
of the tangent vector correlation data from our simulations
with a least square algorithm. The simulations with the CG
DNA model were performed with box lengths of varying size
to avoid finite size effects, and to maintain a homogeneous
ion concentration of each ion species. A box length Lbox =
400Å for the low salt concentrations, and Lbox = 80Å for
the higher salt concentrations was used. Simulating with sev-
eral values for K

bp
ba we determined as best fitting parameter

1–10 | 5
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Fig. 9 The current modulation DG/G as a function of the salt
concentration c. All three data sets cross the x-axis at approximately
0.35 M. The AA data is taken from Ref. 21, and the experimental
data is from Smeets et al. 35.

K
bp
ba = 110 kB T

s2 . The resulting simulation data together with
the experimental results of Ref.3 is displayed in Fig. 10.
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Fig. 10 Plot of the persistence length lp for different concentrations
c for a chain length of N = 20. Simulation boxes of different size
were used to optimize the simulation time and to avoid finite size
effects. The experimental data is taken from Brunet et al. 3.

Additional simulations with 10 to 50 beads confirmed the
length independence of the persistence length. Since the per-
sistence length is a thermodynamic observable these simula-
tions were performed with an implicit solvent Langevin ther-
mostat and not using a LBF.

3.2.2 MobilityThe mobility µ of a polyelectrolyte is de-
fined as the quotient of its velocity v in the direction of the
applied external field ~E and the strength of the field E = |~E|

as
µ =

v

E
. (10)

The mobility simulations with the CG DNA model were per-
formed in a fully periodic system to obtain the electrophoretic
bulk mobility. The applied small electric field causes the
charged particles to move. During this process, the center
of mass velocity of the DNA is tracked. All simulated DNA
strands are in the range of N = 1 . . .150 bp. Simulations were
performed at a fixed monomer concentration of 5mM.

We will also compare our simulation data to a theoreti-
cal model developed by Muthukumar16,28 that describes the
length dependence of the mobility of a polyelectrolyte as

µ = 2x
⇢

E1(k ls)�E1(k L)�
✓

1
k L

◆
[1� exp(�k L)]

�
.

(11)
E1 denotes the exponential integral, which is defined as

En =
Z •

1
dt

exp(�xt)

tn
. (12)

As further parameters, the inverse Debye length k , the Man-
ning parameter x , the segment size ls and the contour length
L are used in Eqn. (11). The Muthukumar functional takes
electrostatic interactions between the monomers and excluded
volume effects into account, but is restricted to low polyelec-
trolyte concentrations and the Debye-Hückel approximation.

For fitting, the parameters k and x are varied. Because of
the geometric complexity of a DNA segment, the size ls in our
model is not clearly defined. Therefore, it was also fitted.

The parameters obtained from our best fits are

x = 0.673 ls = 2.65Å k�1 = 185.6Å . (13)

By using the definition of x and k , the actual values of the fit-
ting parameters can be calculated directly from the simulation
parameters, and the monomer size is estimated by the base
pair distance

x =
lb

b
=

7.15Å
1.6Å

⇡ 4.47

k�1 =

s
e kB T

e2 Si Z
2
i

ci

⇡ 96.1Å

ls ⇡ 3.4Å .

However, these parameters do not agree with those from
our best fit and fail completely to reproduce the mobilities ob-
tained from the simulations. This could be a result of the used
Debye-Hückel approximation which is for a strongly charged
polyelectrolyte like DNA not well suited, but should improve
at higher salt concentrations.
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Fig. 9 The current modulation DG/G as a function of the salt
concentration c. All three data sets cross the x-axis at approximately
0.35 M. The AA data is taken from Ref. 21, and the experimental
data is from Smeets et al. 35.

K
bp
ba = 110 kB T

s2 . The resulting simulation data together with
the experimental results of Ref.3 is displayed in Fig. 10.
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Fig. 10 Plot of the persistence length lp for different concentrations
c for a chain length of N = 20. Simulation boxes of different size
were used to optimize the simulation time and to avoid finite size
effects. The experimental data is taken from Brunet et al. 3.

Additional simulations with 10 to 50 beads confirmed the
length independence of the persistence length. Since the per-
sistence length is a thermodynamic observable these simula-
tions were performed with an implicit solvent Langevin ther-
mostat and not using a LBF.

3.2.2 MobilityThe mobility µ of a polyelectrolyte is de-
fined as the quotient of its velocity v in the direction of the
applied external field ~E and the strength of the field E = |~E|

as
µ =

v

E
. (10)

The mobility simulations with the CG DNA model were per-
formed in a fully periodic system to obtain the electrophoretic
bulk mobility. The applied small electric field causes the
charged particles to move. During this process, the center
of mass velocity of the DNA is tracked. All simulated DNA
strands are in the range of N = 1 . . .150 bp. Simulations were
performed at a fixed monomer concentration of 5mM.

We will also compare our simulation data to a theoreti-
cal model developed by Muthukumar16,28 that describes the
length dependence of the mobility of a polyelectrolyte as

µ = 2x
⇢

E1(k ls)�E1(k L)�
✓

1
k L

◆
[1� exp(�k L)]

�
.

(11)
E1 denotes the exponential integral, which is defined as

En =
Z •

1
dt

exp(�xt)

tn
. (12)

As further parameters, the inverse Debye length k , the Man-
ning parameter x , the segment size ls and the contour length
L are used in Eqn. (11). The Muthukumar functional takes
electrostatic interactions between the monomers and excluded
volume effects into account, but is restricted to low polyelec-
trolyte concentrations and the Debye-Hückel approximation.

For fitting, the parameters k and x are varied. Because of
the geometric complexity of a DNA segment, the size ls in our
model is not clearly defined. Therefore, it was also fitted.

The parameters obtained from our best fits are

x = 0.673 ls = 2.65Å k�1 = 185.6Å . (13)

By using the definition of x and k , the actual values of the fit-
ting parameters can be calculated directly from the simulation
parameters, and the monomer size is estimated by the base
pair distance

x =
lb

b
=

7.15Å
1.6Å

⇡ 4.47

k�1 =

s
e kB T

e2 Si Z
2
i

ci

⇡ 96.1Å

ls ⇡ 3.4Å .

However, these parameters do not agree with those from
our best fit and fail completely to reproduce the mobilities ob-
tained from the simulations. This could be a result of the used
Debye-Hückel approximation which is for a strongly charged
polyelectrolyte like DNA not well suited, but should improve
at higher salt concentrations.
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Fig. 11 The Muthukumar approach29 using the best fit parameters
from Eq.13 to the mobility of the CG DNA simulation data with an
ion strength of I = 0.001 M. The mobility is normalized by the
mobility of a single base pair µ0.

As depicted in Figure 11, the theoretical functional form fits
nicely to the simulation data. Using the Muthukumar func-
tional form for µ helps us to estimate the free-draining mobil-
ity µfd of the CG DNA model since we can easily extrapolate
our data to the large N limit. For comparison with the experi-
mental data, the free-draining mobility is used, because there
is no data of the single monomer mobility. Unfortunately,
there is no experimental data for very short DNA oligomers
(e. g. 1 - 10 bp).

Figure 12 shows the experimental and simulation data. Al-
though the experimental values where obtained in buffered so-
lution, and at different salt concentrations, they agree well, and
match a common theory curve.

Table 1 The parameters that result from a least-square fitting routine
of the Muthukumar theory to the simulation data shown in Fig. 13.

c x ls k
0.001 0.67 2.7 185.6

0.01 0.50 1.7 362.5
0.1 0.47 1.7 98.6
0.3 0.25 0.7 144.1

In the following we simulated our DNA model at various
salt concentrations with different DNA strand lengths denoted
by the number N of base pairs used. This data is shown in
Fig. 13, together with fits using the Muthukumar theory, where
the corresponding fitting parameters can be found in Table 1.
Notable is the fact that the best fit parameters of the Muthuku-
mar theory are strongly varying with the salt concentration,
displaying some unphysical behavior.
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Fig. 12 Plot of the mobility µ/µFD versus the number of base pairs
N for a different ionic strengths. The purple, green and yellow
triangles are the experimental data from Stellwagen et al. 37,38. TAE
and TBE are the two different buffer types Stellwagen et al. used in
their free solution electrophoresis experiments. The dashed blue line
is a fit of the Muthukumar theory to the results of the simulation.
The agreement between the trends from the experiment and the
simulation is better for higher salt concentrations.

The free-draining mobilities are obtained by extrapolation
of the simulation data using the Muthukumar theory. The
starting slope of the mobility levels out at shorter chain lengths
for higher salt concentrations. This results in a decreasing
free-draining mobility for increasing salt concentration, and
can be compared to the experimental data of Hoagland et al.16.
The comparison is plotted in Fig. 14. The level of agreement
between the simulation data and the experimental data is very
encouraging.

4 Conclusion

We have presented an extension of the CG DNA model of
Ref.41 to include a finite persistence length, and to have a
movable model suitable for electrokinetic applications. Our
modifications reproduce several experimental results for the
persistence length and the base pair dependent electrophoretic
mobility of dsDNA at various salt concentrations, while
maintaining the excellent properties of the original model
with regard to ionic currents predictions in nanometer sized
nanopores. The proposed model should be useful for study-
ing the translocation dynamics of dsDNA through nanopores,
and to study dsDNA in all other situations where a correct
dynamical behavior is of interest, and accurate electrokinetic
properties are important.

1–10 | 7

Comparison of µ to Experiments



71

100 101 102 103 104 105

N

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

µ
/µ

0

c = 0.001M

c = 0.01M

c = 0.1M

c = 0.3M

Fig. 13 Plot of the mobility µ/µ0 versus the number of base pairs
N. The data sets correspond to different salt concentrations I. The
free-draining limit is strongly affected by the salt concentration. The
solid lines are Muthukumar fits to determine the free-draining limit
and the parameters of these lines are listed in Table 1.
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Conclusions on dsDNA Model
n AA Simulations in excellent agreement with 

experimental data 
n Main cause of the deficiency of the electrokinetic

model is the increased interfacial friction caused by the 
presence of the DNA

n Electrokinetic model works surprisingly well up to a 
scale ~ 1 nm

n There is a difference in ion distribution between CG 
and AT,

n We have a well working CG model for elektrokinetic
applications

n Further studies on the way….
S. Kesselheim, W. Müller, C. Holm, Phys. Rev. Lett. 112, 018101 (2014);
F. Weik, S. Kesselheim, C. Holm, JCP 145 194106 (2016); 
T. Rau, F. Weik, C. Holm, Soft Matter 13, 3918 (2017)
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Inhomogeneous Dielectrics



The Implicit Solvent Model
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Coarse grained water

• hydrodynamic interactions (e.g. DPD, LB)!

• bulk dielectric permittivity

~D
~P

~E = ~D/"

" = 78

Coarse grained water

• hydrodynamic interactions (e.g. DPD, LB)!

• bulk dielectric permittivity

~D
~P

~E = ~D/"

" = 78

• Water is highly polar, i.e. er= 78
• For dynamics we have to add hydrodynamical

interactions, i.e. DPD, LB, MPCD,….



The Implicit Solvent Model
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• Dielectric interfaces are basically everywhere where 
there are interfaces
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Coarse grained water

• hydrodynamic interactions (e.g. DPD, LB)!

• bulk dielectric permittivity

Na+

Na+

~D
~P
~E = ~D/"

" = 78

" 6= 78???

Na+

Na+

Coarse grained water

• hydrodynamic interactions (e.g. DPD, LB)!

• bulk dielectric permittivity

Na+

Na+

~D
~P
~E = ~D/"

" = 78

" 6= 78???

Na+

Na+

The Implicit Solvent Model
• Permittivity reduced by presence of ions
• Homogeneous dielectric => heterogeneous 

dielectric
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er depends on salt concentration
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concentration (M)
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80
ε E

Na+ Cl−

εE = 72/(1+0.278c)
Na+ Cl− scaled
K+ I−

B. Hess, C. Holm, N. van der Vegt: PRL 96, 147801 (2006)

All-Atom MD, SPC/E explicit water 
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n How does the dielectric permittivity change
n … in close vicinity of highly charged 

objects?
n … with varying salt concentration?

n How do these features affect the behavior 
of static and dynamic properties of charged 
macromolecules?

n How can I model this?
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Dielectric, charged colloid 
(Z = 30e - 90e)
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• MC-simulation: energy
• series of mirror charges
• able to deal with 

piecewise harmonic 
functions

MD-simulation: force
electric and magnetic 
fields that propagate
arbitrary permittivity on a 
lattice link

2 Methods: HIM and MEMD

Harmonic Interpolation 
Method

F. Fahrenberger, Z. Xu, C. Holm, J. Chem. Phys. 141, 064902 (2014) 
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r2� = �⇢

"
r"r� = �⇢

) r ·D = ⇢ (Gauss law)

r⇥D = 0

Maxwell-like Equations

Lagrangian treatment leads to equations of motion 
for the particles and fields.

• Varying permittivity
• potentials to fields
• most general form

F. FAHRENBERGER AND C. HOLM PHYSICAL REVIEW E 90, 063304 (2014)

important features still hold and the statistical observables are
reproduced correctly. Second, an estimate for the systematic
error is presented and discussed. Third, the effect of handling
the global dipole term in periodic boundary conditions is
shown to be erroneous by a comparison to the classical
Ewald method, paving immediately the way to constructing
a correction term. Fourth, both the initial and the dynamic
part of the extended algorithm are validated against analytical
solutions and simulations. Fifth, the numerical performance of
the algorithm is evaluated and advantages and limitations are
discussed. Finally, we conclude and present a brief outlook on
the future of the MEMD algorithm.

II. EXTENSION OF THE ALGORITHM

Most of the proofs for the extended algorithm go along
the lines of the original introduction by Maggs [27,28] and
Pasichnyk and Dünweg [30]. The general idea will be given,
but the main mathematical steps can be retraced in the
aforementioned publication.

The algorithm consists of the following two parts. Calculat-
ing an initial solution of the Gauss law of electrodynamics on
a lattice. The second part consists of applying and propagating
all temporal changes to said solution within the system.
The initial solution proposed by Pasichnyk for a constant
permittivity only has to be adapted slightly to ensure the correct
result for varying dielectric permittivities.

A scheme to acquire an initial solution is shown in Fig. 1.
First, the charges on each plane are averaged, scaled by the
lattice size and local permittivity, and added to the field on

FIG. 1. (Color online) Recursive scheme for the initial solution
of the E field. The average charge in z plane is scaled and added to
each node, following E(n+1)

z = E(n)
z + qplane/(εa2). Then the charge

qplane is subtracted from each charge in the z plane. Analog with y

lines and the single nodes in x direction.

each node

E(n+1)
z = E(n)

z +
qplane

ε
x,y,n
z a2

, (1)

and the charge qplane is subtracted from each vertex in the zn

plane. The charges in y and x direction are updated accordingly
on lines and vertices, following

E(n+1)
y = E(n)

y + qline

εx,z,n
y a2

, (2)

E(n+1)
x = E(n)

x + qvertex

ε
y,z,n
y a2

. (3)

Summation of the total charge in one cell is given by

qplane + qline + qvertex (4)

and this yields the Gauss law directly, if the (∇·) operator
is defined via finite differences E(n+1) − E(n). An iterative
procedure of energy minimization is equivalent to the second
Maxwell equation ∇ × E = 0 and gives a correct initial
solution. This method of numerical relaxation is not very
efficient but has to be done only once.

Starting from this solution of Gauss’ law, only updates of
the electric field following a constraint have to be applied.
Hereby, we can assume that the time scales of the propagation
speed of the fields and the motion of the particles decouple.
Then the propagation of the fields can be described by an
artificial dynamics, in a Car-Parrinello (CPMD) manner [35].
Analog to Pasichnyk and Dünweg, the most general constraint
for the system is

Ḋ + j − ∇ × !̇ = 0, (5)

with the electric displacement field D = εE, the electric
current density j , and an arbitrary vector field ! as an
additional degree of freedom. From this, the Lagrangian

L =
∑

i

mi

2
v2

i − U + fmass

2

∫
ε(r)!̇

2
d3r − 1

2

∫
D2

ε(r)
d3r

+
∫

A( Ḋ − ∇ × !̇ + j )d3r (6)

is obtained, where the Lagrange multiplier A is used to impose
the kinematic constraint, r is the position, mi and vi are
the particle masses and velocities, respectively, and U is an
additional potential. The prefactor fmass simply denotes the
mass equivalent of the exchange particles, analog to electrons
in CPMD, and later turns out to be related to the wave
propagation speed as 1/c2.

The equations of motion for this Lagrangian L(r,ṙ,!̇,D)
can be calculated using variational calculus. The derivative in
! and Ḋ is zero, and the motion of particles and fields is
defined by

d

dt

∂L

∂ ṙ i

− ∂L

∂ r i

!= 0, (7)

∂L
∂!̇

!= 0, (8)

∂L
∂ D

!= 0, (9)
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important features still hold and the statistical observables are
reproduced correctly. Second, an estimate for the systematic
error is presented and discussed. Third, the effect of handling
the global dipole term in periodic boundary conditions is
shown to be erroneous by a comparison to the classical
Ewald method, paving immediately the way to constructing
a correction term. Fourth, both the initial and the dynamic
part of the extended algorithm are validated against analytical
solutions and simulations. Fifth, the numerical performance of
the algorithm is evaluated and advantages and limitations are
discussed. Finally, we conclude and present a brief outlook on
the future of the MEMD algorithm.

II. EXTENSION OF THE ALGORITHM

Most of the proofs for the extended algorithm go along
the lines of the original introduction by Maggs [27,28] and
Pasichnyk and Dünweg [30]. The general idea will be given,
but the main mathematical steps can be retraced in the
aforementioned publication.

The algorithm consists of the following two parts. Calculat-
ing an initial solution of the Gauss law of electrodynamics on
a lattice. The second part consists of applying and propagating
all temporal changes to said solution within the system.
The initial solution proposed by Pasichnyk for a constant
permittivity only has to be adapted slightly to ensure the correct
result for varying dielectric permittivities.

A scheme to acquire an initial solution is shown in Fig. 1.
First, the charges on each plane are averaged, scaled by the
lattice size and local permittivity, and added to the field on

FIG. 1. (Color online) Recursive scheme for the initial solution
of the E field. The average charge in z plane is scaled and added to
each node, following E(n+1)

z = E(n)
z + qplane/(εa2). Then the charge

qplane is subtracted from each charge in the z plane. Analog with y

lines and the single nodes in x direction.

each node

E(n+1)
z = E(n)

z +
qplane

ε
x,y,n
z a2

, (1)

and the charge qplane is subtracted from each vertex in the zn

plane. The charges in y and x direction are updated accordingly
on lines and vertices, following

E(n+1)
y = E(n)

y + qline

εx,z,n
y a2

, (2)

E(n+1)
x = E(n)

x + qvertex

ε
y,z,n
y a2

. (3)

Summation of the total charge in one cell is given by

qplane + qline + qvertex (4)

and this yields the Gauss law directly, if the (∇·) operator
is defined via finite differences E(n+1) − E(n). An iterative
procedure of energy minimization is equivalent to the second
Maxwell equation ∇ × E = 0 and gives a correct initial
solution. This method of numerical relaxation is not very
efficient but has to be done only once.

Starting from this solution of Gauss’ law, only updates of
the electric field following a constraint have to be applied.
Hereby, we can assume that the time scales of the propagation
speed of the fields and the motion of the particles decouple.
Then the propagation of the fields can be described by an
artificial dynamics, in a Car-Parrinello (CPMD) manner [35].
Analog to Pasichnyk and Dünweg, the most general constraint
for the system is

Ḋ + j − ∇ × !̇ = 0, (5)

with the electric displacement field D = εE, the electric
current density j , and an arbitrary vector field ! as an
additional degree of freedom. From this, the Lagrangian

L =
∑

i

mi

2
v2

i − U + fmass

2

∫
ε(r)!̇

2
d3r − 1

2

∫
D2

ε(r)
d3r

+
∫

A( Ḋ − ∇ × !̇ + j )d3r (6)

is obtained, where the Lagrange multiplier A is used to impose
the kinematic constraint, r is the position, mi and vi are
the particle masses and velocities, respectively, and U is an
additional potential. The prefactor fmass simply denotes the
mass equivalent of the exchange particles, analog to electrons
in CPMD, and later turns out to be related to the wave
propagation speed as 1/c2.

The equations of motion for this Lagrangian L(r,ṙ,!̇,D)
can be calculated using variational calculus. The derivative in
! and Ḋ is zero, and the motion of particles and fields is
defined by

d

dt

∂L

∂ ṙ i

− ∂L

∂ r i

!= 0, (7)

∂L
∂!̇

!= 0, (8)

∂L
∂ D

!= 0, (9)
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whereL is the Lagrangian density, which by definition satisfies
L =

∫
L d3r . Variation with respect to ṙ i results in

∂L

∂ ṙα
i

= miṙ
α
i + qiA

α(r i),

d

dt

∂L

∂ ṙα
i

= mir̈
α
i + qiȦ

α(r i) + qi

∂Aα

∂r
β
i

ṙ
β
i ,

where the second transformation is a time derivative. Variation
with respect to r i yields

∂L

∂rα
i

= − ∂U

∂rα
i

+ qiṙ
β
i

∂Aβ

∂rα
i

.

Combining these two results and introducing the vector field

B := ∇ × A (10)

provides the equations of motion for the particle

mir̈
α
i = − ∂U

∂rα
i

− qiȦ
α + qiṙ

β
i

(
∂Aβ

∂rα
i

− ∂Aα

∂r
β
i

)

,

mi r̈ i = −∂U

∂ r i

− qi Ȧ + qivi × B, (11)

as expected. The equations of motion for the electromagnetic
fields can be found by varying the Lagrangian density L.
Variation in !̇ and in time gives

∂L
∂!̇

= fmassε0!̇ − ε0∇ × A = fmassε0!̇ − ε0 B,

d

dt

∂L
∂!̇

= fmassε0!̈ − ε0 Ḃ = 0,

fmass!̈ = Ḃ, (12)

1
c2

!̇ = B, (13)

where the natural initial condition !̇(t = 0) = 0 is used in the
last step, and fmass := 1/c2 for convenience. The next variation
in D gives

Ȧ = − D
ε

, (14)

which leads to the more commonly known expression for
Eq. (11). With these two last results, Eqs. (13) and (14), two
more Maxwell equations can be obtained by inserting into the
constraint equation (5), namely Ampère’s and Faraday’s law:

Ḋ = c2∇ × B − j
ε0

, (15)

Ḃ = ∇ × Ȧ = −∇ × D. (16)

This means that simply applying the constraint (5) repro-
duces the complete electromagnetic formalism. It should be
noted that Eqs. (10) and (14) represent nothing more than
the so-called temporal or Weyl gauge in electromagnetism,
in which the scalar potential φ is identically zero, and which
turns out to be the most appropriate gauge for our purposes.

Since the Lagrangian we introduced is constrained, it is
not possible to easily construct a Hamiltonian from it, only
via the Dirac theory of constrained systems. An elementary

construction would be beneficial to simplify further proofs
for the conservation of phase-space volume, energy, and
momentum. However, it is possible to construct a Lagrangian
that is not constrained and produces the exact same equations
of motion. The proofs and details will not be carried out, but
the resulting Lagrangian is

L =
∑

i

mi

2
v2

i − U + ε

2

∫
Ȧ2

d3r

− ε0c
2

2

∫
(∇ × A)2d3r +

∫
A · j d3r. (17)

The equations of motion for the particles and the fields can
be derived from Eq. (17) and the Lagrangian density by the
use of variational calculus. The resulting equations of motion
for the particles and fields from the unconstrained Lagrangian
are

mi r̈ i = −∂U

∂ r i

− qi E + qivi × B, (18)

B = 1
c2

!̇, (19)

Ḋ = c2∇ × B − j , (20)

Ḃ = −∇ × D. (21)

In our implementation, the magnetic part of the Lorentz
force, v × B from Eq. (18), is omitted. This increases the
speed significantly, but makes it impossible to construct an
unconstrained Lagrangian from Eq. (17), and therefore the
Hamiltonian nature of the algorithm does not hold. Momentum
conservation is violated by the amount of momentum that
the virtual photons carry. This is a negligible percentage and
perfect momentum conservation is not important in most
simulated systems since many contain a thermostat. Energy
conservation, however, holds, as can be shown with a pseudo-
Liouville theorem for the Lagrangian, along the lines of [30].
All additional terms that show up due to a spatially dependent
permittivity simply cancel out.

Like in the algorithm for constant background permittivity,
the thermodynamic observables are perfectly reproduced,
since they are not dependent on the speed of light nor the
magnetic-field component. In contrast to the original version,
the partition function in this extended algorithm contains an
extra term for the varying permittivity. The particle momenta
and the vector field A can still be integrated out in a
straightforward way. If we split up the integration of the electric
field in a longitudinal and a transversal component, we end up
with

Z =
∫ N∏

i=1

d r i

∏

r

DD∥(r)DD⊥ (r) δ(∇ · D − ρ(r))

× exp
(

−β

2

∫
d r

D∥(r)2

ε(r)

)
exp

(
−β

2

∫
d r

D⊥ (r)2

ε(r)

)
.

(22)

The integration over the transversal component also only
contributes a factor, and the longitudinal component cancels
with the δ function. This contribution of the transversal
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Maggswellian Dynamics with er(r)
• Naturally formulated on a lattice (=>fast and local)
• Changing speed of light (CPMD) (=> tricky)
• Implemented in ESPResSo as MEMD (=> useful)

ṙi =
pi
mi

ṗi = �@U

@ri
+

ei
"
D(ri )

Ȧ = �D
"

Ḋ = c2 r⇥ (r⇥ A)� j
"

Leads naturally to Maxwell-like equations
A. C. Maggs and V. Rosseto, PRL 88, 196402 (2002).
J. Rottler and A. C. Maggs, PRL 93,170201 (2004).

I. Pasichnyk and B. Dünweg, J. Phys. Cond.Mat. 
16, 3999 (2004). 
F. Fahrenberger, C. Holm, Phys. Rev. E 90, 063304 
(2014)
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MEMD with Variable Dielectric

• permittivity as a vector (differential1-form), taken as the 
difference between adjacent lattice points (harmonic 
average)

F. FAHRENBERGER AND C. HOLM PHYSICAL REVIEW E 90, 063304 (2014)
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FIG. 2. (Color online) (a) Discretization of the currents, fields,
and permittivities onto a lattice cell. (b) Interpolation of dielectric
permittivity values on the lattice. ε(r) has a position and a direction
(blue arrow). The values for ε1 and ε2 are determined and the value
on the connecting link is set to the average value. If the gradient is
too large, the value is determined by forming the harmonic average.

component is constant for a static dielectric background, but
can vary if the dielectric interfaces are mobile. This gives rise to
thermal Casimir-Lifshitz interactions as discussed by Pasquali
and Maggs [36–38], but the effect will not be discussed further
in this article since we focus on moving charges in static
dielectric backgrounds. The only degrees of freedom now left
are the particle coordinates, which finally lead to

Z =
∫ N∏

i=1

d r i exp
(

−β

2

∫
d r

D(r)2

ε(r)

)
. (23)

This is what is expected from the static case of electromagnetic
interactions.

The lattice discretization in space is done in a way analog
to the original implementation [see Fig. 2(a)], featuring the
same finite difference representations for the gradient (∇·) and
the curl (∇×) operators. The local permittivity values ε can
assume tensorial form, equivalent to a differential two-form.
In our implementation, we reduce the tensor to its diagonal
entries (differential one-form), which merely represents an
optically isotropic medium. The local permittivity therefore
has a value and a direction, and they are placed on the
links of the interpolating grid. The electric displacement field
values D = εE are still stored on the links, although they are
represented by a rotation around these links.

To map given permittivity values, set by an interface or
function, to the lattice, the finite difference between adjacent
grid points is employed. If the difference is significantly bigger
than the values, the link is marked as an interface link. The
values for these interface links are then calculated by taking
the harmonic average

εlink = ε1 · d2

a
+ ε2 · d1

a
, (24)

where ε1 and ε2 are the permittivity values on the adjacent
lattice sites on each side of the interface respectively, d1 and
d2 are the distances of the according lattice site along the link
to the interface, and a is the lattice spacing, as depicted in
Fig. 2(b).

III. SELF-ENERGY INTERACTION

Even in the continuum, the solution of the Maxwell
equations for point charges is singular at the position of the
particle. The point charge carries along with it the electrostatic
energy

1
2

∫

|r−r i (t)|!R

D(r,t)2

ε
d3r ∝

∫ R

0
r2(r−2)2dr =

∫ R

0
r−2dr,

which is a diverging integral. This would mean that the particle
has infinite mass and cannot respond to forces. With a lattice
spacing, a “cutoff” is introduced for this self-interaction, but
still the particle is driven to the center of the cell by the field
created from its own (interpolated) charge. It is, from an energy
point of view, most favorable for the particle to distribute its
charge evenly on all surrounding lattice points, since it then
produces the smallest possible curl (∇ × D) in the cell.

This spurious self-influence is in the original algorithm
corrected by the use of Yukawa potentials. However, if the
permittivity of the system changes within the cell, every
potential based correction scheme fails. However, this problem
can be solved both with a lattice Greens function, or a direct
subtraction scheme.

In our implementation, the permittivity, as it is reduced to
a differential one-form for the above-mentioned reasons, is
placed on the lattice links. Therefore, it remains constant on
the link, allowing us to set up a Green’s function of the form

#r ′G(r − r ′) = − 1
a2

δr,r ′ (25)

if r and r ′ are placed on adjacent lattice sites. For a point
charge, the electrostatic potential can then be found using a
convolution with the Green’s function

φ(r) = q

aεG(r)
, (26)

where we assume that ε remains constant within the cell. This
Green’s function for a point charge on a cubic lattice can
now be solved by a Fourier transform and is limited to the
first Brillouin zone. For an infinitely large lattice, the back
transform yields the integral

G(r) =
( a

2π

)3
∫

k∈BZ

eikr

ε(k)
d3k. (27)

If the Laplace operator on the left-hand side of Eq. (25) is
used to construct a finite-differences operator and applied to
each of the interpolated charges on the lattice, we end up with
a solution of the self-energy influence that can be added up.
This is a well-known scheme for lattices of constant dielectric
permittivity and applies in a straightforward way here if ε does
not change within the cell of each charge [39]. While this is
not suitable for all cases, it can be applied to many and is fairly
fast, since the solution for the given integral only needs to be
calculated once at the beginning of the simulation and it can
be done analytically [40].

Another approach to allow for dielectric variations on
very small scales (within one lattice site) is to use a direct
subtraction scheme. With the assumption that the gradient of
the permittivity, ∇ε(r), is constant on each lattice link, the
influence of the interpolated charges can be directly calculated
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Results for the Counterion RDF
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Coion Depletion (Q=30, cs=20 mMol)
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Far-Field Properties Change
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FIG. 7. Renormalized charge versus the bare colloid charge for the three
different dielectric models, as well as the results of a theoretical prediction,
for a 1:1 electrolyte of 20 mM. The flat and step models are very similar, and
match the theory in the applicable region. The ramp model deviates from
these significantly and demonstrates the fundamental influence of dielectric
changes within the double layer. The counterions are repelled so strongly that,
for low surface charges, the renormalized charge of the colloid is actually
increased due the colloid appearing to have a larger effective radius.

fit quality when compared to the calculated theoretical value,
and they match very well.

The calculated effective charge with fit errors is plotted
against the bare colloid charge in Fig. 7. For comparison, the
theoretical prediction for a constant background permittivity
as proposed by Aubouy et al.52 is included in the plot. It fol-
lows the formula

Zeff = R

ℓB

[

4κRtQ + 2

(

5 −
t4
Q + 3

t2
Q + 1

)

tQ

]

, (24)

where the bare charge is included via tQ = (
√

1 + x 2 − 1)/x
with the substitution x := ZbareℓB/2R(κR + 1).

In the renormalized charge, and therefore the far-field in-
teraction, there is a minor difference between the primitive
flat model and the step model with a sharp dielectric jump.
We confirm the findings in Ref. 53 that the effective screen-
ing of the bare colloidal charge is slightly less effective, since
the counterions are repelled from the colloid surface and the
EDL is widened. The difference to the newly proposed ramp
model however is far greater. It can already be seen in Fig. 3
that the width of its EDL is significantly larger than those of
the other two models. While the effective charge for the flat
and step models ranges between 73% and 99% of the bare
charge, the ramp model predicts much higher values between
86% and 117%. This means that for surface charge densities
of less than 0.3 e/nm2, the effective charge of the colloid as
defined in Eq. (23) is higher than the bare charge. The EDL is
widened significantly, and the counterion maximum is as far
as 1 nm from the colloid surface, as can be seen in Fig. 5(a).
This means that compared to Debye-Hückel theory, the elec-
trostatic potential actually increases more steeply at far dis-
tances, which leads to an increase of the effective charge. This
can be explained via an effective colloid radius. It is apparent
from Eq. (23) that the fitted effective charge will be larger if
the colloid exhibits an effective radius that is larger than R
= 4.225 nm, as inserted into the formula. And with the coun-

terions being pushed out very far, the far field will resemble
that of a colloid with an increased effective radius. While ef-
fective charges higher than the bare colloid charge are unintu-
itive at first, they can occur with our definition of the charge
renormalization and are meaningful. The flat model matches
the theoretical curve closely as expected, since the theory does
not include dielectric effects. All three models converge to-
wards the line Zbare = Zeff for very low surface charges, as
expected.

From the data in Fig. 7, a shift #Zeff in comparison
to the flat model can be calculated and with Eq. (23) inter-
preted as a change in effective colloid radius. With these cal-
culations, the effective colloid charge corresponds to the ra-
dius being widened by 0.37 nm, 0.29 nm, and 0.19 nm, for
Zbare = −30,−60, and −90, respectively. This is a reason-
able estimate when compared to the EDL structure in Fig. 5.
This virtual effective colloid size is not an observable change
in diameter, but a makeshift parameter that is usually included
in the effective charge. In this case however, it explains why
the calculated effective charge can be higher than the bare
charge of the colloid.

VII. CONCLUSIONS

The influence of charges in the dielectric background to
the effective interaction between macroions has been subject
to research for quite some time. Until now, it was not possi-
ble to directly include smooth changes of the dielectric per-
mittivity in regions where charges can move freely. With the
two recently introduced algorithms presented in this work, the
long-range effect of these changes has been investigated. Both
approaches give identical results.

We compared the EDL structure for a charged colloid
in electrolyte solution with three different models of the sur-
rounding dielectric properties. The last of these models, a lin-
ear increase of the permittivity from the colloid surface, has
not been accessible to coarse grained simulations up until now
for the lack of a suitable electrostatic solver. The impact of
this model is significant on the counterion profile within the
EDL. It is still visible in the difference between the renormal-
ized charge calculations according to the Alexander prescrip-
tion, and therefore influences the far field of colloidal inter-
actions. The results indicate that a spatially varying permit-
tivity ε(r) likely plays a significant role in other biophysical
systems, and that the presented algorithms should be applied
more widely.
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Intermediate Conclusion

• MEMD has been tested on many other systems
• Both methods, HIM and MEMD, agree very well
• Born self-energy term can get very big
• Dielectric properties around colloids matter, in 

the near region but also in the far-field!
• The dielectric gradient is important, not so 

much the sharp jump!
• MEMD is a completely local algorithm (good for 

parallelization)
• Almost as fast as P3M (particle-mesh-Ewald)
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We now know it works...

• Apply it to charged macromolecules 
(polyelectrolytes) 

• investigate the influence of heterogeneous 
dielectric environment on electrokinetic
properties



90

Charged Rod Model

• MD simulations with MEMD
• polyelectrolyte with charge -1
• monomers fixed in space
• no additional salt
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er depends on salt concentration
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Adapt e via iterative Procedure

set permittivity

simulation ion distribution

exit if
convergedstart weighted:

• permittivity 2 „inside“ the rod
• mapped, varying permittivity outside, depending on 

the radial counterion distribution
• iterative changes in salt concentration
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Result: Interfacial Repulsion
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Adaptive Scheme for Flexible PE

• calculate salt concentration „on the fly“
• all charges are taken into account
• surrounding 73 cells, weighted
• update every 10 time steps
• overlap results in sufficiently smooth changes
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Method Comparison

• qualitative changes compared to PB
• Counter ions pushed away from polyelectrolyte,  
electrokinetic properties might be different!

• consistent with all-atom MD

We start out with a constant permittivity of ε ¼ 78.5 and
obtain a counterion distribution from an equilibrium MD
simulation. We then map the cylindrically symmetric salt
concentration to a local permittivity using Eq. (1) and use it
as a fixed permittivity for the subsequent simulation run. A
successive under-relaxation scheme equally weighting the
two preceding results converges to the counterion distri-
bution in Fig. 3. We then apply the new time-dependent
adaptive scheme, seen in Fig. 1, to calculate the local
charge concentration and permittivity to a fixed rodlike
polyelectrolyte, as well as a fully flexible polyelectrolyte.
Figure 3 displays all three counterion distributions.
The nonmonotonicity in the counterion distribution is

not predicted by the Poisson-Boltzmann (PB) theory with a
fixed constant dielectric constant. Note that in the case of a
uniform background permittivity there is also a sharp
increase in the counterion density near the polyelectrolyte

backbone; however, the increase only extends over a
relatively short distance (approximately 0.1σ ¼ 0.03 nm,
data not shown) compared to the simulations with a varying
dielectric constant (approximately 4σ ¼ 1.2 nm).
The physical basis of the extended initial increase in the

counterion concentration when the permittivity is adapted
locally is the permittivity gradient in the vicinity of the
polyelectrolyte, where there is an increase from approx-
imately ε ¼ 60 at the polymer surface to ε ¼ 78.5 in the
bulk (see the inset of Fig. 3). The observed distribution is
the combined result of the repulsion of counterions by the
permittivity gradient, the electrostatic attraction of the ions
to the polyelectrolyte backbone, and thermal fluctuations.
Interestingly, there is almost no visible difference in the
counterion distribution around the flexible polyelectrolyte
and the infinite stiff charged rod, demonstrating that the cell
model is a good approximation [63,64].
Our results resemble earlier observations for the counter-

ion distribution around a colloid with a spatially varying
dielectric background [6,7]. All simulations with varying
permittivity also agree qualitatively with atomistic simu-
lations of a similar system using a Kirkwood-Buff based
force field for NaCl [65] in combination with the extended
simple point charge model (SPC/E) water model [66]. The
atomistic simulations displayed a similar depletion of
counterions very close to the polyelectrolyte backbone
and a subsequent rise of the distribution. The excellent
agreement between our three simulation setups, and both
existing ion distributions for colloids and our atomistic
simulations, demonstrates that our method for dynamically
adapting the local permittivity produces physically very
reasonable results.
In Fig. 3 we have also plotted simulation results where

there is a sharp dielectric interface (thin green line) at the
surface of the polyelectrolyte, with a discrete rise from 2
within the polyelectrolyte to 78.5 in the fluid. As observed
in other studies [9,13], the discrete change in the dielectric
interface also produces a thickening of the Debye layer.
However, the difference in the distribution compared to the
Poisson-Boltzmann (thick black line) result is significantly
less than in our simulations with a permittivity adapted to
the local salt concentration (dotted line). This shows that
one not only needs to take into account the reduced
permittivity within a polymer, colloid, or charged surface,
but also the reduction in the permittivity in the surrounding
Debye layer, i.e., a gradient in the permittivity.
The structural differences within the EDL in Fig. 3 have

little influence on many properties such as the radius of
gyration or the polymer diffusion coefficient [67].
However, we found that adapting the local dielectric
constant significantly impacts the response of the system
to an external electric field. This is because the electro-
kinetic behavior of the system strongly depends on the
hydrodynamic and electrostatic friction between the

FIG. 2 (color online). Iterative scheme: starting with a constant
background permittivity, the resulting ion concentrations of
successive simulations are mapped to a spatially varying but
fixed permittivity distribution, until the scheme converges to-
wards a stable equilibrium.

FIG. 3 (color online). Counterion distribution around the
polyelectrolyte backbone with varying permittivity as a function
of the distance from the polyelectrolyte surface. The iterative
scheme for a stiff rod (dashed line), the adaptive scheme for a stiff
rod (dotted line), and the adaptive scheme for a flexible polymer
(red triangles) are almost identical. They differ qualitatively from
the analytical Poisson-Boltzmann (PB) solution (thick black line)
for a uniform permittivity ε ¼ 78.5. The corresponding permit-
tivity ε (inset) in the iterative case goes from 78.5 in the bulk to 60
close to the polyelectrolyte backbone, similar to what is observed
near a charged surface [37,62]. The counterion distribution for a
sharp rise in the permittivity from 2 within the rod to 78.5 in the
fluid (thin light green line) shows only minor deviation from the
PB solution.
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4

ductivity over the polyelectrolyte concentration) of a
salt-free solution of polyelectrolytes as a function of the
monomer concentration C as plotted in Figure 4 together
with experimental data. The equivalent conductivity is
simply:

⇤ =
~j

ELC
, (2)

where ~j is the total current, E is the applied electric field,
L is the box length and C is the monomer concentration.
The conductivities have been additionally normalized by
an extrapolated ⇤0(C = 0), since the hydrodynamic ra-
dius of the specific ions strongly influences the di↵usion
and conductivity even at infinite dilution. The simula-
tions for a constant dielectric background show a mono-
tonic decrease in the equivalent conductivity, in good
agreement with scaling theories which ignore the e↵ect
of dielectric contrast [20, 21, 23, 25, 26, 55]. More im-
portantly, our simulations that adapt the permittivity to
the local ion concentration quantitatively reproduce the
unexpected rise in conductivity at high salt concentra-
tions.

From the snapshots in Figure 4 at monomer concen-
trations of 1mM, 10mM, and 100mM, we see a coiling
of the polyelectrolytes (black) as well as a decrease in
the fraction of condensed counterions (red) at high con-
centrations for the simulations including dielectric varia-
tions (top right snapshot). The simulations assuming a
constant dielectric background (bottom right snapshot)
resulted in a larger number of condensed counterions
(blue). To quantify the fraction of condensed counte-
rions, we used the criterion suggested by L. Belloni [56]
and M. Deserno [57]. In Figure 5, we plot the fraction of
condensed counterions fcci as a function of the monomer
concentration C.

While fcci monotonically increases for simulations with
a constant dielectric background, we observe a maximum
and subsequent decrease when we adapt the dielectric
constant to the local ion concentration. The maximum
occurs at the same monomer concentration as the min-
imum in conductivity in Figure 4. The decrease in fcci
results in a higher e↵ective charge of the polyelectrolytes,
which both increases their mobility and the absolute
charge they carry with them. In addition, there is an
increase in the number of free counterions contributing
to the overall conductivity. This is why the maximum in
the fraction of condensed counterions results in a mini-
mum in the equivalent conductivity of the solution.

We average the dielectric permittivity within 1.4 nm
of the polyelectrolyte backbone and plot the results as
black squares in Figure 5. We find that the reason for
the drop in fcci is a decrease in dielectric permittivity and
therefore a steeper gradient in ", resulting in a stronger
dielectric repulsion from the backbone. The decrease in
" is enhanced due to the coiling of the chains at high
polyelectrolyte concentrations as seen in the snapshots

Figure 5. (color online) The local permittivity "poly around
the polymer backbone (black squares), and the fraction of
condensed counterions fcci for constant dielectric background
(blue circles) and varying local permittivity (red triangles)
as a function of the monomer concentration. The maximum
in the fraction of condensed counterions is due to the sharp
decrease in the permittivity with increasing monomer concen-
tration and occurs at the same concentration as the minimum
in the equivalent conductivity in Figure 4.

in Figure 4. This increases the density of ions within
the polymer coil, which leads to the large decrease in the
local permittivity around the polyelectrolyte backbone.

The dependence of the conductivity on the monomer
concentration is largely independent of the specific sys-
tem being studied. This can be seen by the compari-
son of three di↵erent experimental data sets in Figure 4.
Colby et al. [23] measured the equivalent conductiv-
ity poly(styrenesulfonate) (PSS) with Na+ counterions
at 296 K with a molecular weight of M = 1.2⇥ 106. In
contrast, Kwak and Hayes [24] used poly(styrenesulfonic
acid) (PSA) with Li+, Na+, K+, Cs+ at 298 K with
a molecular weight of M = 5.6⇥ 105. Finally, Lipar-
Oštir et al. [22] measured the equivalent conductivity
of poly(anetholesulfonic acid) (PAS) with H+ measuring
seven sets at temperatures between 278 and 308K. De-
spite the di↵erent counterion types, temperatures, poly-
electrolytes, and polyelectrolyte lengths, all experimental
data sets collapse onto our simulations that include vari-
ations of the local dielectric constant. This demonstrates
that our model captures the essential physics.

We introduced a novel adaptive flexible algorithm that
determines the local dielectric permittivity from the sur-
rounding charge concentration, and verified its validity
via a simple iterative scheme. We found that a decrease
in the dielectric constant near the backbone of a poly-
electrolyte causes dramatic changes in the structure of
the electric double layer.

When an external electric field was applied to the sys-
tem, we saw both quantitative and qualitative di↵erences
between simulations with and without varying permittiv-
ity. Only the results including local dielectric variations

F. Fahrenberger et al., JCP 143, 243140 (2015)
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Equivalent Conductivity

polyelectrolyte backbone and its counterions, and is thus
very susceptible to changes within the EDL.
We simulated the equivalent conductivity Λ (the con-

ductivity over the polyelectrolyte concentration) of a
salt-free solution of polyelectrolytes as a function of the
monomer concentration C as plotted in Fig. 4 together with
experimental data. The equivalent conductivity is simply

Λ ¼
~j
EC

; ð2Þ

where ~j is the current density, E is the applied electric field,
and C is the monomer concentration. The conductivities
have been additionally normalized by an extrapolated
Λ0ðC ¼ 0Þ, since the hydrodynamic radius of the specific
ions strongly influences the diffusion and conductivity
even at infinite dilution. We performed two sets of
simulations with a constant background permittivity, one
with εr ¼ 78.5 and one where the ion concentration in the
simulation box was substituted into Eq. (1) to determine the
background permittivity. Both sets of simulations with a
constant dielectric background show a monotonic decrease
in the equivalent conductivity, in good agreement with
scaling theories, which ignore the effect of dielectric
contrast [24,25,27,29,30,68]. More importantly, our simu-
lations that adapt the permittivity to the local ion concen-
tration quantitatively reproduce the unexpected rise in
conductivity at high salt concentrations.

From the snapshots in Fig. 4 at monomer concentrations
of 1, 10, and 100 mM, we see a coiling of the poly-
electrolytes (black spheres) as well as a decrease in the
fraction of condensed counterions (red spheres) at high
concentrations for the simulations including dielectric
variations (top right snapshot). The simulations assuming
a constant dielectric background (bottom right snapshot)
resulted in a larger number of condensed counterions
(blue spheres). To quantify the fraction of condensed
counterions, we used the criterion suggested by Belloni
[69] and Deserno [70]. In Fig. 5, we plot the fraction of
condensed counterions fcci as a function of the monomer
concentration C.
While fcci monotonically increases for simulations with

a constant dielectric background, we observe a maximum
and subsequent decrease when we adapt the dielectric
constant to the local ion concentration. The maximum
occurs at the same monomer concentration as the minimum
in conductivity in Fig. 4. The decrease in fcci results in a
higher effective charge of the polyelectrolytes, which
increases both their mobility and the net charge they carry
with them. In addition, there is an increase in the number of
free counterions contributing to the overall conductivity.
This is why the maximum in the fraction of condensed
counterions results in a minimum in the equivalent con-
ductivity of the solution.
We average the dielectric permittivity within 1.4 nm of

the polyelectrolyte backbone and plot the results as black
squares in Fig. 5. We find that the reason for the drop in fcci
is a decrease in dielectric permittivity and therefore a
steeper gradient in ε, resulting in a stronger dielectric
repulsion from the backbone. The decrease in ε is enhanced
due to the coiling of the chains at high polyelectrolyte

FIG. 4 (color online). The rescaled equivalent conductivity
Λ=Λ0 over monomer concentration

ffiffiffiffi
C

p
for simulations with

constant permittivity (green dashed, blue dotted) and locally
varying (red solid) permittivity. Experimental data (gray sym-
bols) from Kwak and Hayes [28], Colby et al. [27], and Lipar-
Oštir et al. [26] are reproduced with locally varying permittivity,
while we observe a qualitative difference for a constant dielectric
background. The reason for this is a significant drop in the
dielectric constant around the polyelectrolyte backbone, as seen
in Fig. 5, and the subsequent repulsion of counterions from the
polymer.

FIG. 5 (color online). The local permittivity εpoly around the
polymer backbone (black squares), and the fraction of
condensed counterions fcci for constant dielectric background
(blue circles) and varying local permittivity (red triangles) as a
function of the monomer concentration. The maximum in the
fraction of condensed counterions is due to the sharp decrease in
the permittivity with increasing monomer concentration and
occurs at the same concentration as the minimum in the equivalent
conductivity in Fig. 4.
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Conclusions on Inhom. Dielectrics

n Influence of dielectric mismatches investigated: 
Important for coarse-grained models with 
implicit water

n For permittivity gradients we find a repulsion of 
counterions at close distances (Born energy)

n Find quantitative changes in far field properties
n Find qualitative changes in electrokinetic

properties
n Needed for quantitative predictions 
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